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Evidence of very long meandering features
in the logarithmic region of turbulent

boundary layers

N. HUTCHINS AND IVAN MARUSIC
Walter Bassett Aerodynamics Laboratory, Mechanical and Manufacturing Engineering, University of

Melbourne, Victoria 3010, Australia

(Received 1 February 2006 and in revised form 14 August 2006)

A regime of very long meandering positive and negative streamwise velocity
fluctuations, that we term ‘superstructures’, are found to exist in the log and lower wake
regions of turbulent boundary layers. Measurements are made with a spanwise rake
of 10 hot-wires in two separate facilities (spanning more than a decade of Reτ ) and are
compared with existing PIV and DNS results. In all cases, we note evidence of a large-
scale stripiness in the streamwise velocity fluctuations. The length of these regions can
commonly exceed 20δ. Similar length scales have been previously reported for pipes
and DNS channel flows. It is suggested that the true length of these features is masked
from single-point statistics (such as autocorrelations and spectra) by a spanwise mean-
dering tendency. Support for this conjecture is offered through the study of a synthetic
flow composed only of sinusoidally meandering elongated low- and high-speed re-
gions. From detailed maps of one-dimensional spectra, it is found that the contribution
to the streamwise turbulence intensities associated with the superstructures appears
to be increasingly significant with Reynolds number, and scales with outer length
variables (δ). Importantly, the superstructure maintains a presence or footprint in the
near-wall region, seeming to modulate or influence the near-wall cycle. This input of
low-wavenumber outer-scaled energy into the near-wall region is consistent with the
rise in near-wall streamwise intensities, when scaled with inner variables, that has been
noted to occur with increasing Reynolds number. In an attempt to investigate these
structures at very high Reynolds numbers, we also report on recent large-scale sonic
anemometer rake measurements, made in the neutrally stable atmospheric surface
layer. Preliminary results indicate that the superstructure is present in the log region
of this atmospheric flow at Reτ = 6.6×105, and has a size consistent with outer scaling.

1. Introduction
Prior to the advent of particle image velocimetry (PIV) and direct numerical simula-

tion (DNS) data, the precise form of the dominant log-region structure was largely
unclear, although statistics based on fluctuating streamwise velocity (u) signals at
these heights (particularly the peak in the premultiplied energy spectra kxΦuu and the
long tails in the autocorrelations) had long hinted at the existence of highly elongated
regions of uniform streamwise momentum. Elegant, yet laborious, spatio-temporal
two-point correlations (performed using a static and traversing hot-wire probe)
revealed the time-averaged scale and form of these structures (Kovasznay, Kibens &
Blackwelder 1970; Nakagawa & Nezu 1981; McLean 1990; Wark, Naguib & Robin-
son 1991). However, the first instantaneous snapshots of these structures were provided
experimentally by PIV. Measurements in the streamwise/spanwise plane reveal that
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the log region appears to be characterized by its own streaky structure, notably at
a much larger scale than the well-documented near-wall streaks (Kline et al. 1967).
Tomkins & Adrian (2003) and Ganapathisubramani et al. (2003) show instantaneous
PIV examples of the u stripiness in the log region. Long regions of streamwise mo-
mentum deficit are found, with high-speed fluid seeming to fill the separation between
neighbouring motions. Further investigations have suggested that these long modes
of uniform momentum deficit are associated with packets of hairpin vortices (Adrian,
Meinhart & Tomkins 2000; Tomkins & Adrian 2003; Ganapathisubramani, Longmire
& Marusic 2003). It was found that the elongated low-speed regions are flanked by
vortical motions (believed to be the necks of hairpin structures) and that together
these features are dominant contributors to the overall Reynolds shear stress at this
height (Ganapathisubramani et al. 2003; Marusic & Hutchins 2006). The low-speed
regions are of the order 0.3–0.5δ wide, and typically have a length that exceeds the
streamwise extent of the PIV frame (usually limited to ∼2δ). Instantaneous examples
of these features are given in § 3 (figure 1). Here δ is the boundary layer thickness,
and the axis system x, y and z refer to the streamwise, spanwise and wall-normal
directions, with u, v and w describing the respective fluctuating velocity components.

There is some evidence in the literature that these features can attain very large
streamwise dimensions in pipes, channel flows and atmospheric surface layers. From
hot-film measurements in pipe flows, Kim & Adrian (1999) and Guala, Hommema &
Adrian (2006) found that streamwise energetic modes can extend up to 12–14
pipe radii, and refer to these as very large-scale motions (VLSM). Kim & Adrian
(1999) suggest that the VLSM may be agglomerations of hairpin packets (themselves
agglomerations of individual hairpin vortices). More recent analysis of large numerical
domain DNS results (in particular two-dimensional spectra) have shown that in the
log region, Φuu energy can reside in very long streamwise modes for larger ky bands

(certainly >20h, where h is the channel half-height – see del Álamo & Jiménez 2003;
Jiménez 1998). Jiménez & del Álamo (2004) attribute the very long u fluctuations
in the log region to ‘passive wakes’ formed downstream of smaller attached clusters
of vortices. Similar models were suggested by Kovasznay and coworkers (Kovasznay
1970; Kovasznay et al. 1970; Blackwelder & Kovasznay 1972). Large streak-like
features have also been noted in the atmospheric surface layer, both in experiments
and LES studies (Drobinski et al. 2004; Young et al. 2002) and have been referred to
by Phillips (2003) as atmospheric Langmuir circulations (ALC), implying a formation
mechanism similar to roll-cells observed in the oceans and other bodies of water.

In light of these suggested length scales, and in recognition of the limited fields of
view afforded by PIV, we here employ a spanwise rake of 10 hot-wire sensors in an
attempt to capture the true extent of the largest scales. The idea is to use the fluctuating
signals from the rake to reconstruct the instantaneous spanwise profile of the u velocity
fluctuation. By projecting this signal in time and using Taylor’s hypothesis (frozen
convection) a view of the long high- and low-speed streaks can be constructed that
covers a much larger streamwise domain than that attainable from PIV.

2. Experimental set-up
The hot-wire rake consists of 10 Dantec 55P16 single sensor hot-wire probes with

a spanwise spacing (sy) of approximately 0.115δ, such that the entire rake measures
a spanwise domain just greater than one boundary layer thickness. The probes have
1.25 mm long platinum-plated tungsten wire sensing elements of 5 µm diameter and
are operated in constant temperature mode using an AA Lab Systems AN-1003
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δ Uτ U∞ z/δ

Reτ Facility (m) (m s−1) (m s−1) l+ sy/δ T + 0.05 0.10 0.15 0.50

1120 Minnesota 0.069 0.24 6.0 17 0.114 0.4 — — � �
7610 Melbourne 0.336 0.34 9.82 23 0.118 (0.030) 0.8 � � � �

14 380 Melbourne 0.328 0.67 20.4 45 0.122 (0.030) 3.0 � � � �
19 960 Melbourne 0.321 0.96 29.8 63 0.125 (0.031) 6.1 � � � �

Table 1. Experimental parameters for hot-wire rake experiments.

δ Uτ U∞
Reτ Facility (m) (m s−1) (m s−1) l+ T +

1010 Minnesota 0.070 0.22 5.2 14 0.1
1910 Minnesota 0.064 0.47 12.1 30 0.7
2630 Minnesota 0.066 0.62 16.9 40 0.6
4110 Minnesota 0.061 1.06 29.6 67 0.8
7300 Melbourne 0.326 0.33 9.8 22 0.4

Table 2. Experimental parameters for single-wire spectra traverse experiments.

with overheat ratio set to 1.8. Details of the experimental conditions are given in
table 1. The boundary layer thickness (δ) was determined from a Coles law of the
wall/wake fit to mean velocity profiles. The friction velocity (Uτ ) is obtained from
a Clauser chart fit (with log-law constants κ = 0.41 and A= 5.0); U∞ is the free-
stream velocity; l+ (= lUτ/ν) and T + (= tU 2

τ /ν) are the inner-scaled wire length
and sample interval respectively. Measurements were made at several wall-normal
stations through the log and wake regions. The low Reynolds number measurements
were made in an open return suction-type boundary layer wind tunnel of working
section 4.7 × 1.2 × 0.3 m (the PIV measurements reported here were made in the
same facility: see Hutchins, Hambleton & Marusic 2005b for full details). The higher
Reynolds number measurements (from Reτ = 7 000 to 20 000, where Reτ = δUτ/ν)
were performed in a separate facility at the University of Melbourne (open return
blower-type wind tunnel with working section 27 × 2 × 1 m: see Hafez et al. 2004 for
full details). The Melbourne experiments were also repeated with a smaller spanwise
spacing (sy/δ ≈ 0.03).

In addition to the rake experiments, detailed boundary layer traverses were per-
formed using a single probe across a range of Reynolds numbers in the two facilities.
Details of these measurements are given in table 2. Streamwise velocity fluctua-
tions were acquired at logarithmically spaced stations in z, with sufficient sampling
frequency to resolve the smallest scales and sufficiently long sample lengths to converge
the energy contained in the very largest scales. These data were used to produce the
maps of one-dimensional spectra discussed in § 6.

3. PIV results
Figure 1 shows sample u fluctuations from various recent PIV measurements made

at the University of Minnesota. Plots (a, b and c) are from combined-plane mea-
surements, whereby stereoscopic views of the streamwise/spanwise and streamwise/
wall-normal plane are simultaneously acquired (see Hambleton, Hutchins & Marusic
2006 for details). Plot (d) is taken from 45◦ inclined cross-stream measurements
(Hutchins et al. 2005b). In all cases the shading shows negative streamwise velocity
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Figure 1. Example of instantaneous negative u fluctuations from the combined-plane PIV at
Reτ ≈ 1100. (a) Plan view showing horizontal plane; (b) side view showing vertical plane;
(c) orthogonal projection showing both planes; (d) 45◦ inclined plane measurement at
Reτ ≈ 1010. Thick horizontal lines on plots (a) and (b) show plane intersects. Grey shading
shows negative u fluctuations (see key).

fluctuations (positive fluctuations are set to white). Together these plots illustrate
some of the recognized emergent features in the log region. The horizontal plane of
figure 1(a) clearly exhibits the spanwise stripiness noted by Ganapathisubramani et al.
(2003) and Tomkins & Adrian (2003). For this log region view (z/δ = 0.087), elongated
low-momentum regions persist for the entire streamwise length of the viewing window,
with signs of spanwise repetition (Hutchins, Ganapathisubramani & Marusic 2004,
2005a analysed spanwise repetition of these large-scale features by notch-filtering the
PIV data). The simultaneous side view of plot (b) demonstrates that these features have
a wider three-dimensional structure, extending some considerable distance in the wall-
normal direction. The inclined plane of figure 1(d) is not simultaneously acquired, but
shows a cross-stream slice through similar features. In this view the previously noted
stripiness appears as tall low-momentum eruptions. Vortical structures accompany
these low-momentum zones in arrangements that are, in some sense, consistent with
the hairpin packet model (noted in various planes by Adrian et al. 2000; Tomkins
& Adrian 2003; Ganapathisubramani et al. 2003; Hutchins et al. 2005b; Hambleton
et al. 2006; Marusic & Hutchins 2006). Instantaneous realizations from DNS indicate
rather more complex and tangled arrays of vortex cores, yet still clustered in or about
these low-speed regions (Tanahashi et al. 2004; Jiménez & del Álamo 2004). In all
cited cases high momentum fluid has been noted to fill the regions between the low
momentum stripes. Together these features dominate the two-point correlations of
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Figure 2. Two-point correlations of the streamwise velocity fluctuation Ruu calculated at
zref/δ = 0.087 for (a) horizontal and (d) vertical planes from combined plane experiments
(b) 135◦ and (c) 45◦ inclined plane PIV. Contour levels are from Ruu = −0.12 to 0.96 in
increments of 0.06. Solid lines show positive contours and dashed lines show negative contours.

the streamwise velocity fluctuations (Ruu) throughout the log region. Figure 2 shows
iso-contours of Ruu at zref/δ =0.087 (for the same PIV data). Elongated positive
correlation regions are flanked in the spanwise direction by anti-correlated behaviour
(dashed contours), reflecting the spanwise stripiness of high- and low-momentum
regions previously noted in figure 1. It is clear from figure 2(d) and from the 45◦ and
135◦ comparison of plots (b) and (c) that the correlated regions are inclined in the
downstream direction.

4. Hot-wire rake results
For the instantaneous flow fields and the correlation maps shown above, the length

of the log-region structures exceed the PIV field-of-view. The rake measurements
were undertaken in an attempt to redress this shortcoming and ascertain the true
streamwise length of these features.

4.1. Two-point correlations

Figure 3 shows the outer-scaled two-point correlation of streamwise velocity fluctua-
tion, Ruu(�x, �y, zref), for the rake experiments. The left-hand side shows the correla-
tions in the streamwise direction at �y = 0. This is the autocorrelation, or the
streamwise slice at �y = 0 through a correlation map of the type shown in figure 2(a).
The right-hand side shows the spanwise variation of Ruu. For all available Reynolds
numbers, spanning well over a decade in Reτ , there is a good collapse in the outer-
scaled Ruu. This is all the more striking given the large variation in δ across the
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Figure 3. Streamwise (left) and spanwise (right) two-point correlations of the streamwise
velocity fluctuation Ruu calculated at (a, b) zref/δ = 0.05; (c, d) zref/δ = 0.10; (e, f ) zref/δ = 0.15;
(g, h) zref/δ =0.50. Symbols show rake data: (�) Reτ =1 120; (�) Reτ = 7 610; (�) Reτ = 14 380;
(�) Reτ = 19 960. Lines show 45◦ inclined plane PIV results (dash-dotted) Reτ = 1010; (dashed)
Reτ = 1840; (solid) Reτ =2800.
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Figure 4. (a) Example of rake signal at z/δ = 0.15 for Reτ = 14 380. The x-axis is reconstructed
using Taylor’s hypothesis and a convection velocity based on the local mean, U = 15.9 m s−1.
(b) Typical PIV frame for comparison at Reτ = 1100, z/δ = 0.087. Shading shows only negative
u fluctuations (see grey-scale).

experiments (from 0.069 to 0.336 m). Outer scaling of correlation contours in the
log and wake regions has also been observed by McLean (1990), Wark et al. (1991)
and Hutchins et al. (2005b). The correlation profiles from the inclined plane PIV
of Hutchins et al. (2005b) are included for comparison on the right-hand plots of
figure 3. There is some indication of a low Reynolds number effect for the rake and
PIV data at Reynolds numbers close to Reτ ≈ 1000. At these Reynolds numbers the
streamwise length of the correlations seems to be slightly shorter (solid symbols on
figure 3e) and the anti-correlated regions seem less pronounced (dot-dashed lines on
plots b, d, f and h). Certainly at Reτ ∼ 1000 the log region could still be considered as
‘developing’, with very little scale separation between the near-wall structure and the
log region scales.† Regardless, the correlations scale well on boundary layer thickness
as we move to higher Reτ . Comparing the plots on the left-hand side of figure 3 from
top to bottom reveals that the streamwise length of the correlations increases from
the wall up to the approximate centre of the log region (this length is later shown
in § 6 to peak at z/δ ≈ 0.06), with a pronounced shortening occurring in the outer
wake region (z/δ = 0.50). To highlight this effect the dotted lines on figure 3 show
the size of the positive correlated regions at Ruu = 0.05. Considering the right-hand
side of figure 3, we note that the spanwise width of the correlation region increases
approximately linearly with z/δ for all heights investigated, as was noted for the
inclined-plane PIV by Hutchins et al. (2005b).

4.2. Instantaneous data

The streamwise extent of the log region structures has been previously inferred from
single-point statistics such as those shown on the left-hand side of figure 3. The long
tails in the autocorrelation curves and the peak in the premultiplied spectra kxΦuu

have consistently indicated length scales O(6δ) for turbulent boundary layers. In
reality, when raw fluctuating velocity signals from the rake are viewed, we commonly
see features that are far in excess of these length scales. Figure 4(a) shows a sample

† If we take the start of the log region to be z+ = 100 and the upper limit to be z/δ = 0.15, the
extent of the log region at Reτ = 1120 is minimal (spanning only 0.06δ).
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segment from the rake at z/δ = 0.15. A very long meandering feature appears to
snake through the measurement domain for over 20δ. For the Reynolds number
shown (Reτ = 14 380) this amounts to a physical length of over 6.5 m. This implies
that the log region stripiness previously observed from PIV data is actually a snapshot
of a far larger structure (see the PIV comparison in figure 4b). Furthermore, although
the low-speed region in figure 4(a) is clearly very long, the meandering tendency will
mask its true length from single-point statistics. A synthetic model flow is used in
§ 4.3 to demonstrate this. It should be clarified that the feature shown in figure 4 is
by no means unusual and is typical of much of the rake data we have obtained. At
the present time it is impossible for us to compile accurate length scale and frequency
statistics since, for the most part, these features are rarely fully contained within
our measurement domain, and instead tend to wander into and out of our limited
spanwise domain due to meandering. All we can really state at this stage is that such
events are prevalent features of the log region at all Reynolds numbers we have tested
(this is reinforced by the DNS and ASL measurements of § § 5 and 7).

4.3. Synthetic flow fields

The log region is modelled with a simple large-scale streak-type structure, consisting
of elongated low-speed regions flanked on either side by high-speed regions of similar
length and width. The spanwise width of the low- and high-speed regions (Ly) is set
to 0.4δ, chosen to reflect the scales observed from instantaneous rake and PIV data
(and also the approximate width of the correlation regions in figures 2 and 3). Here
we refer to case I as that where the elongated features are perfectly aligned with
the mean flow direction, as shown in figure 5(a). Case II corresponds to the same
but with an imposed low-frequency spanwise sinusoidal meander, with peak-to-peak
amplitude A= 0.4δ and period ω = 12δ (a detailed description of these synthetic flows
is given in Appendix A). The entire signal is modulated in the streamwise direction
by a Hanning window of length Lx , forcing the fluctuations at either end to zero.
Figures 5(a) and 5(b) show the final functions for cases I and II respectively. To
create the full synthetic flow fields, the aligned or meandering features are randomly
arranged with a normal distribution of length scales, as described in Appendix A.

Figure 5(c) shows the resulting auto-correlation curves for the two cases. Although
identical length scales are modelled in each case, the meandering tendency of case
II has substantially shortened the length of the positive correlation region. The
zero-crossings of the flow-aligned case (solid) approximately reflect the maximum
streamwise length of the distributed features. For the meandering case (dashed), the
shortened correlation becomes negative at approximately �x ≈ ±3.5δ, considerably
shorter than its true length. Figure 5(d) shows the one-dimensional pre-multiplied
streamwise energy spectra in the x direction (kxΦuu) for both synthetic flow fields. Once
again, it is very clear that the spanwise meandering can lead to a misinterpretation
of the true length scale when considering only single-point statistics such as energy
spectra.

Additional comments on the potential pitfalls of using energy spectra to infer struc-
tural characteristics are further discussed in Appendix B. In the meantime, since we
have observed meandering of large-scale features in the instantaneous rake data
(figure 4), a more detailed comparison is made with the statistics generated by
the meandering synthetic flow field. The anti-correlated regions that occur beyond
�x ≈ ±3.5δ for the meandering case (II) in figure 5(c) have also been observed in
the experimental rake data. Zero-crossings are noted in figure 3(a, c, e), although
the resulting regions of anticorrelation are somewhat weaker. The meandering fake
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Figure 5. The log region modelled as elongated large-scale stripy structures. (a) Case I,
streamwise-aligned. (b) Case II, meandering with amplitude and period of 0.6 and 12δ
respectively. Grey scale shows velocity fluctuation (see key). (c) Auto-correlations for a random
array of each modelled flow. (d) Corresponding premultiplied energy spectra (solid) case I;
(dashed) case II. The streamwise/spanwise two-point correlation maps of Ruu are given for
(e) case I, (f ) case II. Grey scale shows Ruu level (see key).

features lead to an interesting streamwise/spanwise correlation map beyond the
zero-crossing points. These Ruu maps are shown for cases I and II in figures 5(e) and
5(f ). As well as being substantially shorter in the streamwise direction, the meandering
case (plot f ) yields a distinctive ‘X’-shaped pattern of positive correlation, with anti-
correlated regions arranged up- and downstream of the reference point at �x � ±3.5δ.
Interestingly, we see signs of such a pattern when we construct a similar Ruu map
from the experimental data, shown in figure 6. Though the effect is weaker (the grey-
scale increment of figure 6 is altered to highlight this), we note the same distinctive
pattern occurring beyond the zero-crossings. The case shown is for the Reτ = 14 380
experiment at z/δ = 0.05, but these features are evident for all Reynolds numbers and
at all measurement heights within the log region. The qualitative similarity between
figure 5(e) and figure 6 would seem to reinforce our initial observations that the very
long features in the log region meander appreciably, and that this hides their true
length from single-point statistics.
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5. Evidence from direct numerical simulations
Large numerical domain DNS has also uncovered evidence of very large-scale

features inhabiting the log region of wall-bounded shear layers. Figure 7 shows
streamwise velocity fluctuations from recent channel flow simulations of del Álamo
et al. (2004) at Reτ = 934. Plot (a) shows the u fluctuations in the log region at
z+ = 150 (z/h = 0.164, where h is the channel half-height). Clearly visible in this
plot are several occurrences of very long regions of negative u fluctuation, visible
in the plot as elongated dark regions. (In separate DNS studies Tanahashi et al.
2004 show complex clusters of fine-scale vortices existing within these elongated low-
speed features.) These features are >10h in length and have characteristic length
scales that scale on outer variables (as shown on the earlier correlation plots). For
boundary layers, the streamwise and spanwise length scales inferred from the peak
in kxΦuu and kyΦuu are of the order λx ≈ 6δ and λy ≈ 0.7δ respectively. Different
length scales have been reported for channel and pipe flows (Jiménez 1998; Kim &
Adrian 1999). Figure 7(b) shows the corresponding streamwise velocity fluctuations
at z+ = 15 (z/h = 0.016). In this near-wall region, inner-scaled streaks dominate with
commonly reported characteristic length scales λ+

x ≈ 1000 and λ+
y ≈ 100 (e.g. Jiménez

& del Álamo 2004). As well as illustrating these two scales, figure 7 seems to imply
some kind of interaction. If we peer through the small inner-scaled structures of
plot (b), we can see a faint superimposed footprint of the larger-scale features. This
characteristic is highlighted by applying a filter of size (h/2 × h/2) to both planes
of data. Here, the aim of the filter is to average away the small-scale features,
and for this purpose a simple Gaussian is adequate. Figure 7(c) and (d) shows just
the negative streamwise velocity fluctuations as grey-scale contours for the filtered
fields, and it is noted that remarkable similarities now appear between the remaining
large-scale events for both wall-normal positions. One such feature is highlighted
by the dot-dashed contour on figure 7(c), which is drawn at a small negative value
(u+ = −0.2). This feature exceeds the length of the numerical domain (>25h). When
the same contour is plotted on figure 7(d), with an appropriate streamwise shift, we
note that it encloses almost exactly the same large-scale feature. If we refer back to
the original velocity fields of plots (a) and (b) it is possible to discern this large-scale
feature even through the unfiltered data. In separate DNS studies, Abe, Kawamura
& Choi (2004) have also noted a footprint from the outer-layer structure onto the
near-wall region, observing that these large-scale structures contribute to the shear-
stress fluctuations. Tsubokura (2005) concluded a similar result from LES studies of
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pipe and channel flows. Hutchins et al. (2005b) have shown previously that the large-
scale log and wake region events retain a measurable correlation with the near-wall
buffer region (‘attached’ and ‘detached’ correlation regimes), and by such mechanisms
very low wavenumber energy leaches into the near-wall region. This conclusion is
well supported by the result in figure 7, and is consistent with the finding that the
streamwise turbulence intensity in the viscous sublayer and buffer region will have
a δ-scale influence (see for example DeGraaff & Eaton 2000; Metzger et al. 2001;
Metzger & Klewicki 2001; Marusic & Kunkel 2003; Jiménez, del Álamo & Flores
2004). Further implications to Reynolds number scaling will be considered in § 6.

The mechanisms that give rise to the large-scale features in the log region are some-
what unclear at this stage. Figure 7(b) seems to show that the small inner-scaled near-
wall features are arranged into larger outer-scaled agglomerations, possibly by the
footprint of the log region structures. We should not, however, exclude the possibility
that there is a feedback mechanism by which the modulated near-wall events influence
the large-scale structures (although such scenarios become increasingly difficult to
countenance at high Reynolds number, where the separation in scale between these
inner- and outer-scaled events becomes very large see § 7). The autonomous channel
simulations of Jiménez et al. (2004) would seem to imply that the near-wall structures
can self-organize into very long features even in the absence of the outer scales,
and Jiménez & del Álamo (2004) attribute the very long u fluctuations in the log
region to ‘passive wakes’ formed downstream of smaller attached clusters of vortices
originating from the buffer region. They suggest that these ‘wakes’ spread under the
effect of background turbulence. However, it is worth noting that a similar-looking
‘spreading wake’ can be obtained by conditionally averaging on meandering features
such as those shown in figure 5. Furthermore, in an instantaneous sense, neither the
PIV nor the DNS data exhibit any signs of a widening of these large-scale features in
the streamwise direction (see figures 1b, 4a and 7a†). In further DNS studies, Toh &
Itano (2005) also note near-wall scales existing under large-scale structures and suggest
that these two disparate scales interact in a co-supporting cycle. Certainly, figure 7
implies a connection between the two scales. As a final important point, the authors
have recently noted that the very long log region structures exist even over fully
roughened walls, which would imply that the near-wall cycle is not responsible for their
formation.

6. Reynolds number effects
It is now well known that the inner-scaled peak in the streamwise turbulence

intensity rises with Reynolds number. One of the first clear examples of this is
given by DeGraaff & Eaton (2000) and Metzger & Klewicki (2001), who collated
streamwise turbulence intensity results from hot-wire measurements where the non-
dimensional wire length was less than 10 wall units (to avoid any possibility of
spatial resolution issues). The collated results convincingly demonstrate that the peak
rises with Reynolds number. Since that time, similar results have been presented
by Marusic & Kunkel (2003) and Jiménez & del Álamo (2004). Figure 8 replots
the data from Metzger & Klewicki (2001), with the addition of numerical results
and the similarity approximations of Marusic & Kunkel (2003). In general, figure 8

† If there were substantive widening of flow features in the streamwise direction, it would be
simple to deduce flow direction without reference to the axis system in the streamwise/spanwise
planes of figures 1(b), 4(a) and 7(a). This is not the case (flow is from left to right).
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Figure 8. Variation of the peak value of the inner-scaled streamwise turbulence intensity with
Reynolds number (around z+ ≈ 15). �, channel flow; �, boundary layer; �, atmospheric surface
layer. Solid symbols are DNS results, open are experimental. MK2003 refers to Marusic &
Kunkel (2003).

reinforces the same trend with Reynolds number, although there is some suggestion
that channel flows (square symbols) may behave differently to boundary layers at the
low Reynolds number end. The dashed line shows the similarity approximation of
Marusic & Kunkel (2003), which describes well the available boundary layer data. A
simple curve fit to their result is given by(

u2

U 2
τ

)
peak

= 1.036 + 0.965 ln(Reτ ). (6.1)
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By low-pass-filtering the high Reynolds number data, Metzger & Klewicki (2001)
show that the additional energy in the near-wall streamwise velocity fluctuations
comes from low-wavenumber events. Figure 7 clearly shows the origins of the low-
wavenumber energy, which is present in the near-wall region in the form of a footprint
from the very large outer-scaled log-region structures. In order to consider the scaling
of the low-wavenumber contributions, figure 9 shows pre-multiplied spectra scaled
with U 2

τ (kxΦuu/U
2
τ ) for various laboratory hot-wire measurements at z/δ = 0.06, made

in the range 1010 � Reτ � 7300 (experiments are described in § 2 and table 2). For
these data it is noted that a strengthening peak emerges in the pre-multiplied spectra
with Reynolds number, centred around kxδ ≈ 1, and increasing in magnitude with
Reτ . Clearly a Reynolds number dependence is evident, indicating that the large-scale
structures in the log region may not scale exclusively on Uτ . If it can be established
that the large-scale structures are caused by the local shear in the log region then
the velocity difference across this region might be a suitable candidate. However, this
remains unclear and further study is required to resolve the velocity scaling issue
for the largest structures. In particular, high Reynolds number data are needed to
confirm the trend with increasing Reτ . As an example, a preliminary result from
the atmospheric surface layer is included in figure 9 as a dashed line. Though this
indicates a continuing Reτ dependency, some caution is required owing to uncertainty
over convergence. This measurement was obtained from 1 hour of sonic anemometer
data during periods of steady wind and neutral buoyancy on 2 June 2005 (see § 7).

To gain a better insight into the contributions to the u spectra across the boundary
layer, figure 10 shows colour contours of kxΦuu/U 2

τ versus log(λx/δ) across all
measured wall-normal positions, together with the corresponding mean velocity and
turbulence intensity profiles. Plots (a) to (d) represent increasing Reynolds number,
with Reτ = 1010, 1910, 2630 and 7300 respectively. The figure shows two distinct en-
ergy peaks emerging with increasing Reynolds number. For convenience we will refer
to these as the ‘inner’ and ‘outer’ sites. The inner site is fixed in viscous coordinates,
occurring at z+ ≈ 15 and λ+

x ≈ 1000 (shown by the white + symbol). For the Reynolds
numbers shown here this is the strongest peak, and occurs at the same wall-normal
location as the peak in the broadband turbulence intensity (shown by the filled circles).
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This inner site is due to the near-wall cycle of streaks and quasi-streamwise vortices
(Kline et al. 1967; Jiménez & Pinelli 1999; Schoppa & Hussain 2002). As Reynolds
number increases, the second (outer) energy site emerges (shown by the black + in
figure 10). This occurs within the logarithmic region of the mean velocity profile and is
approximately fixed in outer coordinates at z/δ ≈ 0.06 and λx/δ ≈ 6 (although there is
some indication that the precise location of the peak wanders gradually with Reynolds
number). The energy in this outer site comes from the largest modes in the turbulent
boundary layer that we have here termed ‘superstructures’. Namely, the very long
regions of meandering positive and negative u fluctuation inhabiting the logarithmic
region, as evidenced by the PIV, hot-wire rake and DNS data of figures 1, 4 and 7
respectively. The size of these events scales on δ, and their magnitude primarily on U 2

τ

but with a clear Reτ dependence. A cursory glance at the increasing Reynolds number
cases of plots (a) to (d) gives a very vivid impression of the emergence of the outer
energy site with Reτ . At the lowest Reynolds number, there is insufficient separation
of scales to observe the outer peak and the energy from the inner-scaled events
swamps the weaker log region structure. The plots indicate that Reynolds numbers
of Reτ � 2000 are required before we will clearly see an emergence of the outer site.
It is also important to note from the higher Reynolds number cases of figure 10 that
the emergent large-scale energy is felt all the way down to the wall (this region is
labelled FP for footprint in figure 10d). This increasing presence of low-wavenumber
energy in the near-wall region will likely contribute to the rising near-wall peak in the
broadband turbulence intensity at z+ =15 (see figure 8). The low-wavenumber energy
is essentially the footprint due to the log region structure imparting a large-scale
organization or modulation on to the near-wall cycle (see figure 7). Del Álamo &
Jiménez (2003) decomposed u fluctuations from Reτ = 550 channel DNS into two
plots of kxΦuu where λy > 0.75h and λy < 0.75h. They show similar trends of inner
and outer energy sites to those shown in figure 10 (although to see this behaviour at
low Reynolds numbers required segregation according to spanwise scale).

It is important to monitor the effect of limited spatial resolution for the spectra
shown in figures 9 and 10. The same hot-wire probe was used for all Minnesota
spectra and thus the non-dimensional wire length has varied from l+ = 14, 30, 40 and
67 for Reτ = 1010, 1910, 2650 and 4110 (see table 2). This can clearly be seen in the
diminishing magnitude of the inner energy site in figure 10(a–c) at z+ ≈ 15, λ+

x ≈ 1000.
The Reτ =7300 measurements were made in a larger facility and are better resolved
with l+ =22. For the results reported here, spatial resolution is not such an issue when
considering the large-scale low-wavenumber phenomena in the logarithmic region of
the boundary layer (figure 9). However, in the near-wall region, where the energy-
contributing motions are smaller, the limited resolution becomes a problem. The red
lines on the profile plots of figure 10(ii) show the predicted turbulent intensities for
each Reynolds number and thus highlight the discrepancies. These lines are from
the similarity formulation of Marusic & Kunkel (2003), which has been shown to
compare well to other high spatial resolution data at these Reynolds numbers (such
as those shown in figure 8).

From scaling arguments based on the attached eddy hypothesis (Townsend 1956;
Perry, Henbest & Chong 1986; Marusic & Perry 1995) we would expect to see k−1

x

behaviour spanning the region between the inner and outer energy sites for eddies
that scale with their distance from the wall. A hairpin vortex packet scenario would
be consistent with these attached eddies being mainly aligned and spatially arranged
within the large superstructure (Marusic 2001), which is also consistent with VLSM
of Kim & Adrian (1999). Owing to the presence of the aforementioned inner and
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outer energy sites, significant regions of k−1
x behaviour are only possible for high

Reynolds numbers very close to the wall. Nickels et al. (2005) estimated that a k−1
x

region in the u-spectra will occur within the limits kxδ > 21; kxz < 0.4 for z+ > 100.
Therefore a triangular k−1

x region would appear as a plateau on the premultiplied
spectra plots in figure 10 bounded by

z+ > 100, λx/z > 15.7, and λx/δ < 0.3.

Based on the above limits the k−1
x region will not exist for Reτ < 5230, and thus it is

only on figure 10(d) at Reτ =7300 that a small k−1
x region appears. Even so, with

increasing Reynolds number it is clear that the intermediate scales (between the inner
and outer energy sites) in the log region do tend to follow the trend described
by the k−1

x formulation (the line λx/z = 15.7 is shown on each spectra plot in
figure 10). Further high Reynolds number experimental data are needed to confirm
this behaviour fully. Such experiments are also required to remove any uncertainty
regarding the apparent strengthening of the ‘superstructures’ with increasing Reτ , as
suggested by the data in figure 9. In this case the extent of a k−1

x region would be
further reduced as the outer energy site encroaches on the limit λx/δ =0.3.

Figure 11 is a sketch summarizing our interpretation of some salient features of the
spectra shown in figure 10. In this simple model, the energy spectrum is composed
of two main separate energy sites. Close to the wall, at the point of maximum
turbulence production, the near-wall cycle causes an inner energy site with location
and magnitude fixed in viscous units (ν and Uτ ). In the logarithmic region the
‘superstructures’ lead to an outer energy site with location fixed on outer units (δ)
and a magnitude that appears to rise with Reynolds number. As Reτ increases, these
two sites become increasingly separated. Co-existent in the logarithmic region is a
region of k−1

x behaviour due to attached eddies that scale with distance from the wall
z and Uτ . In addition, and not shown on figure 11, we would expect wake structure
contributions beyond the edge of the logarithmic region due to eddies that scale with
δ and Uτ (Perry & Marusic 1995), although their contribution is relatively weak in
zero pressure gradient flows.

Examples of the structure associated with inner and outer energy sites are included
in figure 11 as grey-level contours of u fluctuation. The data are from the channel flow
DNS of del Álamo et al. (2004) and are included for illustrative purposes only. (The
sketched spectrum corresponds to Reτ ≈ 4000, while the DNS data are for Reτ =934.)
These data highlight the inner/outer interaction, with energy from the outer site or
‘superstructure’ extending down to the near-wall region. This is evident in both the
spectrum and the two x-y planes of u fluctuation, where the large-scale structure in the
log region leaves a faint imprint on the near-wall region. The white contour highlights
the same large-scale feature evident at both wall-normal locations (a large low-speed,
darker-shaded region). The contribution of this footprint to the energy spectrum is
shown by the arrows linking these two contours. As Reynolds number increases, the
footprint in the near-wall region will become progressively more noticeable. This is
not only due to the increasing scale separation between the inner and outer scales, but
also because the magnitude of the ‘superstructure’ fluctuation becomes increasingly
comparable to the (viscous-scaled) fluctuation due to the near-wall cycle.

As noted earlier, all the above is consistent with a need for both inner and outer
scaling for the streamwise turbulence intensities in the near-wall region. The arguments
would also apply to the spanwise turbulence intensities (v2/U 2

τ ) but not to the wall-

normal intensities (w2/U 2
τ ) and the Reynolds shear stress (−uw/U 2

τ ) owing to the
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Figure 11. Schematic explaining the relative contributions to the energy spectra shown in
figure 10. The main iso-contour plot has three salient components, as shown on the right-hand
side.

blocking effect of the wall. (Within vortex-based models, one can also interpret this
blocking effect as the image vortex structures in the wall.) Certainly this is reflected
in experimental and DNS data by a spatial compactness of w and Reynolds stress
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fluctuations as compared to u and v (Ganapathisubramani et al. 2003, 2005; Hoyas &
Jiménez 2006). However, an important fact that is often overlooked in these statistics
is that although w and uw do not contain energy at low wavenumbers, the individual
spatially compact concentrations exhibit a strong alignment with the extremely long
u modes of the superstructure (see Ganapathisubramani et al. 2003 and Marusic &
Hutchins 2006 for examples of this, and all literature pertaining to hairpin packet
models).

Evidence of an outer-scale contribution to the near-wall region is not new, and
has been noted in the literature for many decades. One particular study is that of
Rao, Narasimha & Badri Narayanan (1971) , who considered scaling of the near-wall
‘bursting’ frequency. Using only single-point time-series data, they were able to deduce
that large outer-scaled structures were active in rearranging and interacting with the
near-wall structure. This is basically the same conclusion that we arrive at from our
study.

7. The atmospheric surface layer (ASL)
Preliminary results from recent experiments performed in the atmospheric surface

layer will also be briefly discussed. These data make a useful high Reynolds number
appendix to the preceding discussion. Experiments were conducted at the SLTEST
facility, located in Dugway Proving Grounds, Utah. Full details of the facility are
available in Klewicki et al. (1995), Metzger & Klewicki (2001) and Kunkel & Marusic
(2006). The unique geography of this site enables measurements to be made in
extremely high Reynolds number turbulent boundary layers (Reτ ≈ O(106)) that have
developed over 100 km of low surface roughness featureless salt flat (equivalent
sand grain roughness k+ ≈ 22). These atmospheric measurements are essentially a
scaled-up version of the hot-wire rake experiments described in § 2, with wall-normal
position and spanwise separation scaled on the expected boundary layer thickness
(δ is estimated at 60 m for the ASL). A spanwise array of 10 sonic anemometers
(Campbell Scientific CSAT3) are deployed on tripods mounted 2.14 m above the
desert floor and spaced 3m apart in the spanwise direction. At one end of the
spanwise array is located an additional wall-normal array of 9 logarithmically spaced
sonic anemometers (from z = 1.4 to 25.7 m). A photograph of the measurement array
installed at the SLTEST site is included here as figure 12. Details of the experimental
procedure will be reported in full elsewhere.

We will consider an hour of data taken from a period of neutral buoyancy
and steady wind conditions during the early hours of 2 June 2005. Mean statistics
from this hour compare well to canonical turbulent boundary layers measured in
laboratory facilities. The mean velocity profile obtained from the wall-normal array
is logarithmic, which together with Uτ indicates that the log-law extends from 9 mm
above the wall to beyond the top of the tower (the entire tower shown in figure 12 is
located within the log region). Turbulent intensities are as predicted by the similarity
approximations of Marusic & Kunkel (2003). Spanwise correlations of streamwise
velocity fluctuation (Ruu) for the spanwise array are shown in figure 13 and compare
well to the correlations measured with the hot-wire rake (see § 4.1). The symbols show
the correlation data from laboratory measurements across the Reynolds number range
1840 < Reτ < 19960. The solid lines show the corresponding data for the hour of ASL
data. The collapse with outer scaling is remarkably good, especially considering that
the comparison between the symbols and the lines represents a Reynolds number
range of more than two decades (and δ has varied by three orders of magnitude).
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Figure 12. View of the measurement array installed at the SLTEST site.
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Figure 13. (a) Streamwise and (b) spanwise two-point correlations of the streamwise velocity
fluctuation Ruu. (�) show rake data for 1840 <Reτ < 19960 at z/δ =0.05; solid line shows
Utah data for Reτ ≈ 660000 at z/δ = 0.036.

There are some signs that the ASL correlations are not fully converged. Even with
one hour of data, the total advection length for the ASL measurement is only
approximately 300δ as compared to over 37000δ for the Reτ = 19960 laboratory
data. Convergence of low-wavenumber information will always be problematic in
atmospheric measurements owing to limited periods of neutral stability and very large
structural length scales. Regardless, figure 13 shows that similar large-scale features
inhabit the log region of high Reynolds number atmospheric surface layers. The long
region of positive correlation, flanked in the spanwise direction by anti-correlated
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behaviour is a typical statistical signature of the ‘superstructure’. Figure 14 shows
instantaneous streamwise velocity fluctuations for a 100 s trace across the spanwise
array. The streamwise ordinate is reconstructed using Taylor’s hypothesis, in exactly
the same way as for figure 4. It is immediately obvious that the same very long
meandering features inhabit the log region of the ASL. The feature shown in figure 14
is almost half a kilometre in length. Some sense of proportion can be obtained from
the schematic of the measurement array, which is drawn to scale on the figure
(compare to the photograph in figure 12). A comparison with laboratory results
would indicate that even longer features will occur (>20δ). Indeed, the meandering
tendency of these large-scale features means that they often wander into and out of
our measurement domain before we can assess their true length (the spanwise width
of the sonic anemometer array is only 0.5δ and the sample length is also somewhat
limited).

The feature shown in figure 4 is enormous in comparison to the near-wall structure
(1000 wall units in the ASL equates to 90 mm). With this kind of scale separation
between the near-wall cycle and the log region structure, it becomes increasingly less
intuitive to sanction a situation whereby the near-wall cycle can influence or give rise
to the ‘superstructure’. Certainly at lower Reynolds number the degree of scale-overlap
tends to give the impression that these two scales are intimately entwined. Perhaps this
is so at low Reynolds numbers, with the log region structure subject to a certain degree
of wall-up interaction from the near-wall cycle. However, for the ASL, we are left with
the notion that the inner and outer energy site (figure 11) could be two quite separate
regimes, and that any substantial interaction is likely to be top-down (Hunt &
Morrison 2000). Circumstantial evidence for this scenario comes from Jiménez &
Pinelli (1999), who demonstrate that the near-wall cycle is autonomous and can
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continue largely unabated even in the absence of external (large-scale) influence. In
addition, the existence of ‘superstructure’-type features over fully roughened walls
(where the near-wall cycle in theory no longer exists) implies that the log region
structure is shear-driven rather than relying on a specific near-wall formation process.

8. Conclusions
The principle findings of this study are summarized by the following points.
(i) Superstructures. hot-wire rake measurements have confirmed that very long

meandering features populate the log region of turbulent boundary layers, extending
to over 20δ in length. These features form the stripiness noted in PIV experiments
that has been previously related to the hairpin packet paradigm and shown to carry a
large proportion of the Reynolds shear stress in the log region (Ganapathisubramani
et al. 2003; Marusic & Hutchins 2006). These may be what Kim & Adrian (1999)
referred to as very large-scale motions (VLSM) in turbulent pipe flow.

(ii) Outer scaling. the superstructures have a dimension that scales on boundary
layer thickness δ. Thus as Reynolds number increases they become increasingly large
in comparison to the near-wall structure. Taking the inner and outer characteristic
length scales from the local peaks in the pre-multiplied energy spectrum of u

(figure 10), we can approximate that the superstructure is larger than the near-
wall structure by a factor of at least 6Reτ /1000. The streamwise velocity fluctuations
due to the superstructures appear to be Reynolds number-dependent. Further studies,
including higher Reynolds number data, are likely required to fully determine their
correct velocity scale.

(iii) Meandering. instantaneous views of u fluctuation in the log region suggest that
the superstructure meanders substantially along its length (see hot-wire rake, DNS
and sonic anemometer data of figures 4, 7 and 14). By studying synthetic meandering
flow features, it is shown that this meandering can severely curtail the length scales
we infer from two-point correlations and pre-multiplied energy spectra (§ 4.3). The
fact that longer length scales are reported in the log region of pipe flows than for
boundary layers (Kim & Adrian 1999) may suggest that spanwise (or azimuthal)
meandering is to some degree constrained in certain internal geometries.

(iv) Footprint. importantly, these very large outer-scaled structures maintain a
footprint in the near-wall region. This is clear from instantaneous DNS data (figure 7)
and the wall-normal variation of kxΦuu (figure 10). This input of low-wavenumber
outer-scaled energy into the near-wall region supports the need for both inner and
outer scaling (and hence Reτ dependency) of the near-wall streamwise turbulence
intensities.

(v) Atmospheric surface layer. we have anchored our observations with a single
high Reynolds number measurement made in the atmosphere at Reτ ≈ 660000. For
periods of steady wind and neutral buoyancy, we confirm the presence and scaling of
superstructures in high-Reynolds number turbulent boundary layers (§ 7).

(vi) Possible origins. numerous mechanisms have been suggested to explain the
existence of large-scale features in the log and wake region of turbulent boundary
layers, as discussed in § 1. At this stage the authors lack the time-resolved information
required to comment on formation mechanisms. However, our recent experiences in
the ASL, where scale separation between the near-wall structure and superstructure
is more than three orders of magnitude different, makes us somewhat wary of ‘wall-
up’-type explanations. With increasing Reynolds number, the over-riding impression
from our experiences at SLTEST and from the development of pronounced inner
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and outer sites in the energy spectra (figure 10) is that the inner- and outer-scaled
structure could in fact be two quite separate regimes that overlap and are intertwined
in some complex Reynolds number-dependent manner.

The preceding analysis has dealt exclusively with streamwise velocity fluctuations.
In future work we would like to expand the measurements made here to include
the remaining two velocity components. Of particular interest are the pre-multiplied
spectra for the spanwise fluctuations (kxΦvv), which are predicted to scale in a similar
manner to the u spectra. This is also the component for which the least amount of
experimental data presently exists.
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Appendix A. Functional form of synthetic flow fields
In § 4.3, streamwise-aligned and spanwise-meandering synthetic streak arrays were

considered (cases I and II respectively). The spanwise profile of case I is invariant in
x, and given by

case I: −3Ly

2
< yf I <

3Ly

2
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where Ly is the streak width and Lx is the streak length. The accompanying sketch
shows that this function describes 11

2
periods of a co-sinusoid modulated by a box

function such that the integral of the signal in the spanwise direction is zero. For
the spanwise meandering features of case II, the original function (uf II ) has an
x-dependent sinusoidal shift applied in the spanwise direction, of the form

uf II

(
yf II, xf II

)
= uf I , (A 2)

where

yf II = A sin(2πxf /ω + φ) + yf I . (A 3)
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Figure 15. (a) Case II: the meandering fake streak, as given by (A 2); (b) length scale
distribution for Lx .

A and ω are the respective amplitude and period of the meander and φ (which is
uniformly distributed between 0 and ω) randomizes the phase of the meander in xf .
A sketch of the meandering case is given in figure 15(a).

To create the full synthetic flow fields, the aligned or meandering features are
randomly arranged with a normal distribution of length scales (about zero), yielding
a mean length of Lx ≈ 7δ and a maximum length of approximately 30δ. Figure 15(b)
shows the normalized probability distribution of Lx .

Appendix B. A note on energy spectra
The analysis of § 4.3 shows that meandering may lead to misinference of length scales

from one-dimensional energy spectra. In fact, there is potential for misinterpretation
even when no meandering is present. Consider the pre-multiplied energy spectra
for the streamwise-aligned case as shown by the solid line of figure 5(d). The peak
in this curve occurs at 18δ, despite the fact that the average structural length for
this case was just 6.9δ (as given by the distribution in figure 15b). Two important
factors contribute to this discrepancy. In the first instance, the structure that we
have modelled represents only approximately one half of a sinusoidal period in the
streamwise direction. In such cases we would expect a spectral peak to occur at
roughly twice the characteristic length scale. The actual streamwise profile used for
the synthetic flows is a Hanning window of length Lx , which can be shown to yield
a spectral peak at 1.717Lx (obtained by regression fit to a sinusoid). Thus it is
clear that where flows are non-sinusoidally periodic (as turbulence indeed is) it is
perhaps unwise to rely purely on a sinusoidal decomposition to infer structure. This
factor alone does not fully account for the discrepancy in figure 5(d). There is an
additional problem due to length scale distribution. Campbell’s theorem tells us that
randomly arranged events of equal length will return an energy spectrum identical in
shape to that of a single isolated event. In this sense we might hope to be able to
back-out structural information from energy spectra. However, in the presence of any
form of distribution of length scales, Campbell’s theorem informs us that the final
energy spectrum will be a summation of the spectra for each individual length scale
modulated by a density factor (probability × length scale). Thus the final spectral
estimate (including the location of any pre-multiplied peak) is contaminated by the
length scale distribution. The wide distribution of overlapping scales makes turbulent
signals a prime candidate for this form of contamination.
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Figure 16. Two-dimensional premultiplied energy spectra for various isolated synthetic flow
fields. Filled contours show normalized magnitude of kxkyEuu for (a) case I, streamwise-aligned
Lx = 5δ; (b) case I, streamwise-aligned L = 10δ; (c) case I, streamwise-aligned L = 20δ;
(d) case II, meandering L = 20δ. In each case a schematic of the synthetic flow is shown
above the spectra (where the grey scale shows streamwise velocity fluctuation).

Two-dimensional spectra (Euu) are not immune to these problems. Figure 16 shows
kxkyEuu for various synthetic flow functions. Plots (a) to (c) show streamwise-aligned
cases. For these single events, the peak in λx occurs at 1.717Lx , as was previously
predicted for the Hanning function. In the spanwise direction the peak in λy occurs at
2Ly (since the spanwise waveform is essentially sinusoidal). It is noted that in all cases
the low wavenumber energy in the streamwise direction persists to approximately 10
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times the peak value in λx . When analysing turbulent flow data it would be easy
to misconstrue this tail in the low wavenumber energy as indicating the presence of
very long structures. Yet for the synthetic flow fields under investigation there are
no features with lengths greater than Lx . Figure 16(d) shows the Lx = 20δ case with
meandering. The comparison between plots (c) and (d) highlights once again how
the addition of meandering can shift the peak in the premultiplied spectra to shorter
wavelengths. Not only this, but the meandering has also inclined the contours of
kxkyEuu in the ky direction. It is noted that contours of kxkyEuu calculated from DNS
channel flows are tilted in this manner (del Álamo et al. 2004). It would be tempting
to assume from the inclined contours of figure 16(d) that structures increase in width
as they become longer. However, for the synthetic input structure used here, we know
that this is not really the case. Rather, it is true that as structures become longer,
they are statistically more likely to wander over a wider spanwise domain.
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