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Research into high-Reynolds-number turbulent boundary layers in recent years has
brought about a renewed interest in the larger-scale structures. It is now known that
these structures emerge more prominently in the outer region not only due to increased
Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692–701;
Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1–28), but also when a
boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech.,
vol. 29, 1967, pp. 625–645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101–131).
The latter case has not received as much attention in the literature. As such, this work
investigates the modification of the large-scale features of boundary layers subjected
to zero, adverse and favourable pressure gradients. It is first shown that the mean
velocities, turbulence intensities and turbulence production are significantly different
in the outer region across the three cases. Spectral and scale decomposition analyses
confirm that the large scales are more energized throughout the entire adverse pressure
gradient boundary layer, especially in the outer region. Although more energetic,
there is a similar spectral distribution of energy in the wake region, implying the
geometrical structure of the outer layer remains universal in all cases. Comparisons
are also made of the amplitude modulation of small scales by the large-scale motions
for the three pressure gradient cases. The wall-normal location of the zero-crossing
of small-scale amplitude modulation is found to increase with increasing pressure
gradient, yet this location continues to coincide with the large-scale energetic peak
wall-normal location (as has been observed in zero pressure gradient boundary layers).
The amplitude modulation effect is found to increase as pressure gradient is increased
from favourable to adverse.
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1. Introduction
The last decade of wall-turbulence research has seen great progress in the

understanding of the large-scale structure of the flow. This was propelled by
the investigation of Kim & Adrian (1999) who proposed a model of vortex
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packets to explain the well-known dominance of very-low-frequency energy in the
logarithmic region of high-Reynolds-number wall turbulence. Since then, studies of
the large-scale structures have shown that they dominate in the log-region and are
characterized by alternating regions of low and high momentum (Ganapathisubramani,
Longmire & Marusic 2003; del Álamo & Jiménez 2003; Tomkins & Adrian 2003;
Ganapathisubramani et al. 2005; Hambleton, Hutchins & Marusic 2006). These large-
scale events have a typical spanwise width of 0.3–0.5δ, and persist over very long
distances, up to 15δ in the streamwise direction (Hutchins & Marusic 2007a). They
have been interpreted either as long ‘trains’ of aligned hairpin eddies (Adrian 2007)
or as global modes (del Álamo & Jiménez 2006). Importantly, it has been shown
that these large-scale structures significantly influence the near-wall region. Abe,
Kawamura & Choi (2004) and Hutchins & Marusic (2007a) have shown that the
large-scale fluctuations of the log-layer are superimposed onto the near-wall small
scales, hence imposing a strong ‘footprint’ at the wall as predicted earlier by the
attached eddy hypothesis of Townsend (1976). Indeed, Townsend (1976) suggested that
the small-scale structures of the near-wall region should feel all of the wall-parallel
motions due to the above attached eddies. Furthermore, the large- and small-scale
interaction is not only a linear superposition; it has been observed that the large-scale
features that inhabit the log-region appear to amplitude modulate the smaller motions
near the wall (Hutchins & Marusic 2007b; Nikora et al. 2007). Previous studies
have also suggested such a coupling (Rao, Narasimha & Badri Narayanan 1971;
Bandyopadhyay & Hussain 1984; Grinvald & Nikora 1988). A clear modulation effect
has been supported recently by the study of Mathis, Hutchins & Marusic (2009a) who
quantified the degree of amplitude modulation. It should be noted that both effects,
superposition and modulation, have been found to increase as the Reynolds number
increases (Hutchins & Marusic 2007a; Mathis et al. 2009a). This is due to an increase
in large-scale activity with Reynolds number (Hutchins & Marusic 2007a,b; Marusic,
Mathis & Hutchins 2010).

The general presence and qualitative form of these large-scale features appears to
be a recurrent property of wall-bounded flows, including internal flows (Monty et al.
2007; Balakumar & Adrian 2007; Bailey et al. 2008), and the atmospheric surface
layer (Kunkel & Marusic 2006; Marusic & Heuer 2007; Marusic & Hutchins 2007).
Furthermore, recent studies comparing the flow structure in boundary layer, pipe and
channel flows at matched Reynolds number have shown similar small- and large-scale
interaction in all flows (Monty et al. 2009; Mathis et al. 2009b), despite the apparent
difference in large-scale phenomena (Kim & Adrian 1999). Hence, it is logical to
consider what interaction these large-scale log-region motions have in flows subjected
to a pressure gradient.

A survey of the literature reveals many studies dealing with pressure gradient effects
in turbulent boundary layers, but most of them have focused only on statistical
properties (see Jones & Launder 1972; Nagano, Tagawa & Tsuji 1992; Spalart &
Watmuff 1993; Krogstad & Skåre 1995; Marusic 1995; Fernholz & Warnack 1998;
Jones, Marusic & Perry 2001; Skote & Henningson 2002; Nagib & Chauhan 2008;
Bourassa & Thomas 2009, among others) and little is known about coherent structures.
The first clues were given decades ago in the work of Bradshaw (1967b) on the flow
structure of equilibrium boundary layers in adverse pressure gradient (APG) flows.
From measurements made in three boundary layers, one with zero pressure gradient
(ZPG) and two with APG (moderate and strong), Bradshaw (1967b) identified some
important features of wall-bounded flows subjected to an increasing pressure gradient.
Specifically, he showed a strengthening and rising influence on the flow of the large
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eddy motions as the pressure gradient increased. From a spectral analysis, he observed
a rise of the low-frequency energetic content in the outer region. He suggested that
the large scales can be crudely regarded as universal, differing only by scale factors of
velocity and length. Because the large eddies contribute significantly to the local shear
stress, and hence the turbulence production, Bradshaw (1967b) speculated that they
should control the energy supply to the smaller scales in the outer part of a boundary
layer. This was also confirmed by Dengel & Fernholz (1990) and Skåre & Krogstad
(1994) in strong APG flows, where a secondary peak in turbulence production was
observed in the outer region. However, such structures appear not to change the
universality of the smaller motions in the inner layer, which led Bradshaw (1967b)
to reiterate previous observations that the large-scale motions are mostly ‘inactive’.
Recalling that, in the inner layer, an ‘active’ universal component contributes largely
to the shear stress, an ‘inactive’ component (imposed by the eddies and pressure
fluctuations in the outer layer) does not produce shear stress and can be regarded as
a quasi-steady oscillation of the inner-layer flow (Townsend 1961; Bradshaw 1967a).
However, the inactive motions, being larger swirling and meandering eddies, produce
shear stress in the outer region (Townsend 1976). It should be acknowledged that the
conclusions of Bradshaw (1967b) were remarkably insightful given the limited data
available at the time.

Advances in numerical simulation capability have enabled deeper analysis of the
flow structure of turbulent boundary layers. Direct numerical simulation (DNS) studies
carried out on turbulent boundary layers near separation (Spalart & Coleman 1997;
Na & Moin 1998; Skote & Henningson 2002) or in equilibrium (Lee & Sung 2009),
have shown that under a strong APG, the near-wall streaks are significantly weakened
with wider spanwise spacing. However, these studies have provided information only
about the turbulent structure of the near-wall region, and at very low Reynolds
numbers in which the log-region is limited or non-existent. It is only very recently
that large-scale outer-region motions have received more attention (Dixit & Ramesh
2010; Monty, Harun & Marusic 2011; Rahgozar & Maciel 2011). From a study of
the cross-correlation between wall shear stress and velocity fluctuations in reverse-
transitional flow, Dixit & Ramesh (2010) have shown a considerable elongation of
the large scales with a smaller structure inclination angle as FPG strength increases.
Conversely, Krogstad & Skåre (1995) have previously shown that large-scale structures
were shortened and structure inclination angle increased in APG flow. The thickening
or flattening of these structures identified by Dixit & Ramesh (2010) and Krogstad
& Skåre (1995) are difficult to measure as they are primarily inferences from
superimposed contour lines. Rahgozar & Maciel (2011) studied the large-scale features
in the outer region of a turbulent boundary layer subjected to a strong APG. They
identified large and long meandering streaky patterns, similar to those observed in
ZPG flows (Hutchins & Marusic 2007a). Furthermore, they noted that these events
appear less frequently than in the canonical case. Overall, one of the issues in
pressure gradient flows is that the number of parameters known to affect the flow
is considerably larger than in ZPG boundary layers. In an attempt to reduce the
parameter space, and enhance our understanding on pressure-gradient effects, Monty
et al. (2011) performed a parametric study on the effects of increasing APG in
constant conditions (matched Reynolds number and constant viscous scaled sensor
length). Unlike previous studies, they have studied the energy content of the flow, and
found that the large-scale log-region events are strongly energized by the increasing
pressure gradient, becoming a significant contributor to the increasing streamwise
turbulent intensity profile across the boundary layer.
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FIGURE 1. (Colour online) (a) Illustration of turbulent boundary layer subjected to a change
in pressure gradient (LSM: large-scale motions); (b) pressure coefficient Cp, for: ♦, APG; and
◦, FPG. Solid lines indicate a linear fit of Cp and the vertical dash–dotted line indicates the
measurement location for data presented in this paper.

Following on from the observation that the large-scale features have a strong
influence in wall-bounded flows, this paper aims to understand the change in the large-
scale structures and their interaction with small scales when a mild pressure gradient is
imposed. Similar to Monty et al. (2009) and Mathis et al. (2009a) this investigation is
undertaken through a comparison of boundary layers with carefully matched Reynolds
number and measurement conditions. Hence, we consider three pressure gradient
flows, favourable pressure gradient (FPG), ZPG and APG, which nominally have
the same initial conditions, i.e. a ZPG turbulent boundary layer at Reτ ' 2600 (±10 %)
as illustrated in figure 1(a). For this purpose, two new experiments carried out in
boundary layers with APG and FPG are presented and compared with the ZPG case
documented in Monty et al. (2009) and used by Mathis et al. (2009a). The data
analysis will only consider scaling with variables appropriate for ZPG boundary layers.
This approach is necessary since the aim is to identify changes to flow characteristics
due to a mild pressure gradient, relative to the ZPG case, for a fixed range of scales
defined by Reτ = δUτ/ν ≈ 3100.

2. Experimental details
The experiments were performed in an open-return blower wind tunnel. The

tunnel has a settling chamber containing honeycomb and five screens, followed by
a contraction with area ratio of 8.9:1, leading into a fixed ceiling, ZPG inlet section
1.2 m long and a cross-sectional area of 940 mm × 375 mm (a trip wire is placed
at the start of this section). The inlet is followed by a 4.2 m test section with an
adjustable ceiling made from acrylic and hung by threaded rods such that its height is
easily adjusted. However, due to the requirement that the ceiling be adjustable and the
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fact that the string holding the measurement probe protrudes through the ceiling, there
is a restricted number of streamwise locations where measurements can be undertaken
(typically every 0.5 m from the inlet). In both pressure gradient cases considered, the
free stream turbulence level remains below 1 % and the boundary layer thickness is
less than 20 % of the tunnel height to ensure that the boundary layer and the ceiling
do not influence each other. Further details of the wind tunnel can be found in Monty
et al. (2011) and Marusic (1995). The ZPG case was performed in the high-Reynolds-
number boundary layer wind tunnel (HRNBLWT) at Melbourne (Nickels et al. 2005).
The choice of using the HRNBLWT instead of the pressure-gradient wind tunnel
for the ZPG case has been made for two reasons: (i) the HRNBLWT is among the
highest-quality ZPG flows that can be achieved in a laboratory; (ii) ZPG data taken in
the pressure-gradient tunnel was only taken for validation purposes in the early stages
of the measurement program (of which a small subset of the data is reported here) and
did not have the same level of tolerance on measurement parameters or experimental
error as the non-ZPG cases.

2.1. Pressure gradient and experimental parameters
The pressure coefficient for an incompressible fluid is given by

Cp = P− P∞
1
2ρU∞2 = 1−

(
U1

U∞

)2

, (2.1)

where P is the local static pressure, P∞ is the static pressure at the beginning of the
inlet section (x = 0 m) and U1 and U∞ are the local and inlet free stream velocities,
respectively. Figure 1(b) shows the Cp distribution for the APG and FPG cases. The
test section is configured such that a ZPG (Cp = 0± 0.01) is maintained until x≈ 3 m,
from which point a constant pressure gradient is maintained for both non-ZPG cases.

Measurements from three boundary layers subjected to different pressure gradients
were acquired at a matched friction Reynolds number Reτ ≈ 3000. The friction
Reynolds number is defined as Reτ = δUτ/ν, where δ is the boundary layer thickness
determined by the method of Jones et al. (2001), Uτ is the friction velocity described
in § 2.2 and ν is the kinematic viscosity. It should be noted that the three flows
have a similar initial condition, Reτ ' 2600 at the upstream transition from ZPG
to FPG/APG (x ≈ 3 m) as illustrated in figure 1(a). All of the measurements were
performed using single hot-wire anemometry. Wollaston wires were soldered to the
prong tips and etched to give a platinum filament of the desired length l. Filament
diameters of φ = 2.5 µm (APG/FPG) or φ = 5 µm (ZPG) were used. In an attempt
to avoid variations due to spatial resolution effects (see Hutchins et al. 2009) when
comparing the different pressure gradient flows, a non-dimensional hot-wire length of
l+ ' 30 was maintained (l+ = lUτ/ν). The non-dimensionalized sampling duration has
been kept sufficiently large, TU1/δ > 20 000, where T is the total sampling duration at
each height in seconds. A summary of the experimental conditions are given in table 1.
The error in hot-wire measured mean velocity is estimated at ±1 % and turbulence
intensity ±2 % (as determined by Hutchins et al. 2009; Monty et al. 2009, and others).

The pressure gradient in boundary layer flows can be characterized by a variety of
non-dimensional parameters. In this paper, the Clauser pressure gradient parameter β,
the acceleration parameter K and the viscous-scaled pressure gradient p+x are reported:

β = δ
∗

τw

dP

dx
, K = ν

U1
2

dU1

dx
, p+x =

ν

ρU3
τ

dP

dx
, (2.2)
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FIGURE 2. Comparison of the three boundary layer measurements at matched Reynolds
number, Reτ ≈ 3000; (a) mean velocity profiles U+; and (b) broadband turbulence intensity
profiles u2/Uτ

2: ♦, APG; �, ZPG; and ◦, FPG. The solid line in plot (a) shows U+ =
κ−1 log(z+) + A (κ = 0.41, A = 5.0), and the dashed line shows U+ = z+. The dash–dotted
line in (b) indicates z+ = 15.

where δ∗ is the displacement thickness. Table 1 shows that the parameter values are
of similar magnitudes for the APG and FPG boundary layers and that the pressure
gradients are relatively mild. This was desired such that the flows maintained some
degree of universality; namely, Prandtl’s law of the wall holds for all cases and some
logarithmic region of the mean velocity profile exists.

2.2. Skin friction
Oil-film interferometry (OFI) has been used to independently determine the friction
velocity, Uτ = √τw/ρ, for all boundary layer measurements (where τw is the mean
wall shear stress and ρ is the fluid density). This technique allows us to determine
Uτ within ±1 % of error. Details of the OFI technique, analysis method and error
estimation are available in Chauhan, Ng & Marusic (2010).

3. Results
3.1. Mean velocity and turbulence intensity profiles

Figure 2(a) shows the mean velocity profile scaled with inner variables (U+ = U/Uτ ,
z+ = zUτ/ν) for all three pressure gradient flows. Two notable features can be
observed. First, all profiles collapse within experimental error in the inner region
(z . 0.1δ). This characteristic was expected due to the mild magnitude of the pressure
gradients imposed. It has been shown in stronger pressure gradient flows that a
deviation of the mean velocity profile from the classical log-law can occur (Krogstad
& Skåre 1995; Nagano, Tsuji & Houra 1998; Nagib & Chauhan 2008; Monty et al.
2011). The second noticeable feature is the consistent increase of the mean velocity
relative to Uτ in the wake region with pressure gradient (Nagano et al. 1992; Krogstad
& Skåre 1995; Skote & Henningson 2002; Nagib & Chauhan 2008; Monty et al.
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FIGURE 3. Broadband turbulent intensity profiles for FPG, ZPG and APG data at Reτ ≈
3000 scaled with local free stream velocity, U1. The dash–dotted line indicates z+ = 100. For
symbols, refer to table 1.

2011, among others). The corresponding broadband turbulence intensity profiles are
displayed in figure 2(b). We recall that the non-dimensional sensor size l+ and the
Reynolds number are nominally equal for all flows. Clearly, there is no similarity in
u2/U2

τ . As the pressure gradient increases, the turbulence intensity scaled with friction
velocity rises significantly all of the way through the boundary layer. The difference
is not a simple scaling problem since the distributions are very different in shape.
The main discrepancies appear in the outer region where it can be observed that
the turbulence intensity drops rapidly with wall distance in the FPG boundary layer.
However, in the APG flow, a weak secondary peak is observed. At this point, we
conclude only that the boundary layer is more energetic relative to the wall-friction
loss as the pressure gradient changes from favourable to adverse, and particularly so in
the outer region. A scale-based explanation for this observation will be given in § 3.4
using a scale-decomposition analysis.

To demonstrate that the rise in energy in the outer region is not due simply to a
scaling argument, the turbulence intensity profiles have been plotted scaled with U1

in figure 3. In the near-wall region, the intensity is now lowest in the APG case
and increases as the pressure gradient changes sign. However, scaling with U1 in the
near-wall region is not appropriate since U1 is not a relevant velocity scale so far from
the free stream. In figure 3, the vertical dash–dotted line indicates z+ = 100, if we
consider the outer region taken from this line towards the edge of the boundary layer,
the intensity still clearly rises with pressure gradient.

3.2. Turbulence production
To understand the mechanics behind the rise of the turbulence energy from FPG
to APG, we analyse turbulence production for each flow. The general equation for
turbulence production is given by

P=−uiujSij, Sij = 1
2

(
∂Ui

∂xj
+ ∂Uj

∂xi

)
, (3.1)
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where ui are the fluctuating velocity components, Sij is the rate of strain tensor and
Ui is the mean velocity component (Pope 2000). In wall-bounded flows, the mean
spanwise velocity is zero, which reduces the general equation considerably so that the
turbulence production, P+ scaled with inner variables, can be written as

P+ =−uw+
∂U+

∂z+
− u2

+ ∂U+1
∂x+
+ w2

+ ∂U+1
∂x+
− uw+

∂W+

∂x+
. (3.2)

where w is the wall-normal velocity fluctuation. Since all experiments performed in
this study used only single hot-wire sensors, w was not measured. To acquire this
data, a two-component measurement is required, using an X-wire or similar, and this
is challenging due to spatial resolution issues and accessing the near-wall region in our
flow. To proceed, however, it is sufficient to accept w2

+
is O(1) for all wall distances

in the energy containing region, i.e. 1 < z+ < δ+ (Kunkel & Marusic 2006). It is
instructive to consider the orders of magnitude of each term in (3.2): the first term,
−uw+∂U+/∂z+, is O(10−1), while −u2

+
∂U+1 /∂x+ and w2

+
∂U+1 /∂x+ are O(10−4), and

−uw+∂W+/∂x+ is O(10−6); thus, the second, third and fourth terms are negligible.
Figure 4(a) shows the Reynolds shear stress, uw+ profiles for each pressure gradient.

Although no w measurements were made, reasonable estimates for uw+ can be
obtained in flows that are two-dimensional in the mean using an integrated version
of the mean momentum equation, and here we use the formulations described by
Perry, Marusic & Li (1994) and Perry, Marusic & Jones (2002). Here, an analytical
expression for the total shear stress is obtained by using a law of the wall/wake
formulation and the continuity equation and integrating the mean momentum equation.
Marusic (1995) showed detailed comparisons between the Perry et al.formulations
and high-fidelity flying X-wire measurements to confirm the validity of the approach.
Given that the data in figure 4(a) is estimated, we simply note here that the APG
case has much higher uw+ magnitude, while the uw+ profile in the FPG case is only
slightly lower than the ZPG case. It is certainly the outer region that distinguishes the
three pressure gradient cases as earlier observed in the streamwise turbulence intensity
profiles. The increased Reynolds shear stress trend in the outer region is well in
agreement with the increasingly APG data of Bradshaw (1967b), Nagano et al. (1992)
and Lee & Sung (2009). Conversely, a decrease in Reynolds shear stress in the outer
region has been reported with increasingly favourable pressure gradient (Jones et al.
2001).

The estimated turbulence production, P+, is shown in figure 4(b). Turbulence
production is locally highest in the near-wall region as shown by experimental and
numerical studies. These observations led Robinson (1991) to summarize that the
thin, near-wall buffer region is the most important zone of the boundary layer in
terms of the production of turbulence energy. Figure 4(b) also shows that there is
almost no observable change across the three pressure gradient cases in this region.
This is in agreement with DeGraaff & Eaton (2000) who found that P+ collapses
across all acceleration parameters except for the lowest-Reynolds-number data (which
they attribute to low-Reynolds-number effects). In contrast, previous FPG studies have
shown that a high acceleration parameter acts to reduce turbulence production in
the near-wall region (Fernholz & Warnack 1998; Bourassa & Thomas 2009). Skote,
Henningson & Henkes (1998) found that P+ increases in flows subjected to an APG.
Most of the contradictory studies, however, consider strong pressure gradients and low
Reynolds numbers. The combination of these parameters results in much larger values
of ∂U+1 /∂x+ than that considered in the present investigation. For example, in Nagano
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FIGURE 4. Profiles of (a) Reynolds shear stress, uw+ (using the formulation of Perry et al.
(2002), based on the integrated momentum equation), (b) estimated turbulence production,
P+, (c) diagnostic function, Ξ , and (d) pre-multiplied turbulence production, P+z+: ♦, APG;
�, ZPG; and ◦, FPG.

et al. (1998) the strong APG has ∂U+1 /∂x+ five times larger than in our APG case,
while this quantity in the investigation of Bourassa & Thomas (2009) is one order of
magnitude larger than our FPG case (for their x/L= 0.25, strong FPG case).

In the outer region, it is not clear how P+ changes since its magnitude is
low relative to the inner region. Although one can observe a slightly elevated
production for the APG case in figure 4(b), nothing further can be concluded from
this representation. Previous work indicates that there is a general increase of outer
layer production as the pressure gradient varies from favourable to adverse (Nagano
et al. 1992; Skåre & Krogstad 1994; Fernholz & Warnack 1998; Skote et al. 1998;
Aubertine & Eaton 2005). It is noted that Nagano et al. (1992) and Skåre & Krogstad
(1994) have used outer scaling when presenting production statistics, however an
increase (with pressure gradient) in the outer region in those studies is still observed if
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inner scaling is used. Since the choice of inner or outer scaling does not change the
conclusions, the remaining discussion is based on inner-scaled quantities.

Marusic et al. (2010) has shown that the P+ representation of figure 4(b) visually
underestimates the importance of the contribution in the log-region when using semi-
logarithmic axes. Instead, Marusic et al. propose that one should plot P+z+ on such a
graph since the total production can be written as

P+tot =
∫ δ+

0
P+ dz+ =

∫ δ+

0
P+z+ d(log z+). (3.3)

Therefore, on a plot of P+z+ versus log z+, equal areas of the plot represent equal
contributions to the total production. In ZPG or in mild pressure gradient cases where
the second and third terms in (3.2) can be neglected, the contribution to the bulk
production can be written as

P+z+ =−uw+
∂U+

∂z+
z+ =−uw+Ξ. (3.4)

It is now seen that the premultiplied form of the production is simply the Reynolds
shear stress, −uw+ multiplied by the diagnostic function, Ξ = z+∂U+/∂z+. The
diagnostic function profiles for all pressure gradient cases are shown in figure 4(c)
and the premultiplied turbulence production P+z+ profiles are shown in figure 4(d). It
can be observed from the velocity profiles in figure 2(a) that the inflection in the wake
of the velocity profile causes a peak in Ξ in the outer region. This peak, combined
with the outer peak in uw+, gives a large contribution to P+z+ in the outer region; the
APG case, therefore, exhibits the largest P+z+, followed by the ZPG and FPG cases.

In the near-wall region, P+z+ is observed to be almost invariant with pressure
gradient. The reason for this invariance can be explained as follows. Here Ξ will not
change with pressure gradient near the wall, as long as Prandtl’s law of the wall holds
(which is the case for mild pressure gradients such as those considered here). Further,
the Reynolds shear stress near the wall does not change significantly for mild pressure
gradient strengths. To understand this, consider the two main contributors to the
near-wall motions; small scales of the near-wall cycle and the ‘foot-print’ of the large
scales which act to modulate the small scales. The large-scale structure itself does not
contribute directly to uw+ near the wall (in contrast to u2

+
). It will be shown in § 3.3

that there is considerably more energy in the large scales in the APG flow, but much
less change in the small scales near the wall. As such, the small scales may experience
more or less modulation with pressure gradient, however, the mean uw+ is insensitive
to the pressure gradient. This is in agreement with the aforementioned observations of
Townsend (1976) and Bradshaw (1967a) who concluded that the larger-scale motions
of the outer layer are mostly inactive, in the sense that they are not contributing to the
shear stress near the wall despite their significant local contribution in the outer region.

The statistical analyses presented thus far indicate that it is the outer region that
contains the distinguishing features for the three pressure gradient cases. Since large-
scale features are associated with this region (Adrian, Meinhart & Tomkins 2000;
Hutchins & Marusic 2007a), it is important to understand how pressure gradient
causes certain features to be more energized (or attenuated). The following sections
attempt to provide some insight into the structure of the flow that contributes to the
observed statistical behaviours.



488 Z. Harun, J. P. Monty, R. Mathis and I. Marusic

3.3. Energy spectra

The energy distribution of ZPG turbulent boundary layers has previously been studied
in detail by Hutchins & Marusic (2007a,b) and Balakumar & Adrian (2007) and
others. Such studies have also been well documented in channel and pipe flows (del
Álamo et al. 2004; Monty et al. 2009). Monty et al. (2009) provided a direct
comparison of the energy distribution between a turbulent boundary layer (ZPG),
channel and pipe flow, at matched Reynolds number, highlighting similarities and
noticeable differences in the large-scale content. A similar comparison of three
turbulent flows is presented here.

Figure 5(a–c) shows spectragrams (Hutchins & Marusic 2007b) for all three flows,
where contours of the premultiplied power spectral density (kxφuu/U2

τ ) are plotted
against wall distance z+ and non-dimensional wavelength λ+x . Here kx = 2π f /Uc is the
wavenumber and Uc is the convection velocity taken to be the local mean velocity
(invoking Taylor’s frozen turbulence hypothesis). The overall shape of the three maps
are seen to be similar, however, there are substantial differences appearing in the outer
region. For all of the maps, a similar highly energetic peak can be observed near
the wall at z+ ≈ 15, centred around λ+x ≈ 1000 (marked by the symbol ‘+’). This
peak, referred to as the ‘inner peak’, is the well-known energetic signature of the
near-wall cycle of elongated and quasi-streamwise streaks (Kline et al. 1967). As the
distance from the wall increases, the emergence of a secondary peak or a ridge can
be seen (vertical dash–dotted line), which is especially evident for the APG boundary
layer. This peak, referred to as the ‘outer peak’, corresponds to the signature of the
largest-scale motions or superstructures (Hutchins & Marusic 2007a). The wall-normal
location of the outer peak in ZPG boundary layers has been reported by Mathis et al.
(2009a) to be Reynolds number dependent, and situated at the geometrical centre of
the log-layer, z+ = 3.9Re1/2

τ . In cases of FPG and APG, it is quite clear that this outer
peak does not occur at the same location as in the ZPG case (z+ = 3.9Re1/2

τ ≈ 200).
The existence of the outer peak is much clearer for the APG boundary layer, whereas
it is very weak for the FPG case. This suggests that one of the effects of the APG is
to strengthen and/or increase the population of large-scale motions. The outer peak has
been observed previously in ZPG turbulent boundary layers to emerge around λx ≈ 6δ
(Hutchins & Marusic 2007a; Mathis et al. 2009a; Monty et al. 2009). A similar length
scale is observed for FPG and APG, suggesting that similar types of structures inhabit
the log-region in each flow.

From the overall picture of the energy content of the three flows, given in
figure 5(a–c), it is evident that the most significant differences appear in the outer
part of the boundary layer, although there is some discrepancy remaining close to the
wall (more evident in the total streamwise energy plot of figure 2(b). The difference
between flows is particularly noticeable in figures 5(d) and 5(e), in which the energy
map of the ZPG boundary layer has been subtracted from the APG and FPG maps,
respectively. It is observed that a significant amount of energy is added in the outer
region for the APG flow, and conversely missing from the FPG layer. Interestingly, the
peak energy difference occurs at approximately the same location z/δ ≈ 0.2–0.3 and
the same wavelength λx/δ ≈ 2–3 for both APG and FPG cases.

To interrogate the energy distribution in more detail, the energy spectra from four
selected wall-normal locations are plotted in figure 6. The wall-normal locations
chosen are: (a) z+ ≈ 15, (b) z+ ≈ 100, (c) z+ ≈ 3.9Re1/2

τ and (d) z/δ ≈ 0.3. Near the
wall (figure 6a), all flows exhibit a similar premultiplied energy spectra, with the inner
peak clearly visible at λ+x ≈ 1000. It can be seen that the intensity of the inner peak
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FIGURE 5. (Colour online) (a–c) Premultiplied energy spectra of the streamwise velocity
kxφuu/U2

τ . Contour levels are 0.15–1.8 with 0.15 increments. The thicker (blue online) contour
corresponds to 0.9 and the dashed (blue online) contour corresponds to 1.5. The symbol ‘+’
denotes the coordinate z+ ≈ 15, λ+x ≈ 1000. The vertical lines denote the coordinate z+AM=0.
The dotted horizontal line indicates λx = δ. (d,e) Difference between the energy spectra of
APG/FPG and ZPG |kxφ

+
uu|APG/FPG − |kxφ

+
uu|ZPG. Contour levels are from −0.2 to 0.6 in step

of 0.1, solid lines indicate positive contours, dashed lines negative contours and dash–dotted
lines zero.

is of the same magnitude (within experimental error), suggesting that the small-scale
features remain mostly unaffected by the pressure gradient. However, a substantial
rise of the energy in the larger wavelengths (λx > δ) is observed as the pressure
gradient increases. This corresponds to a strengthening of the footprint of the large
scales (Hutchins & Marusic 2007a) as the pressure gradient increases. At z+ ≈ 100
(figure 6b), large-scale structures are clearly dominating the flow in the APG case. The
most energetic structures at this location have λx/δ ≈ 6. In the FPG case, however,
the large scales are certainly not as energetic. In fact, the large-scale energetic peak
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FIGURE 6. Premultiplied energy spectra at four selected wall-normal locations: ♦, APG; �,
ZPG; and ◦, FPG.

is almost the same magnitude as the small-scale peak. The small-scale structures are
observed to be only slightly increased with the changing pressure gradient. In the
log-region, at z+ ≈ 3.9Re1/2

τ (figure 6c), the large-scale structures exhibit a peak in
ZPG and FPG flows at a wavelength of λx/δ ≈ 4 and λx/δ ≈ 5, respectively. However,
in the APG case, the most energetic structures shorten to λx/δ ≈ 3. A similar result
was also found by Skåre & Krogstad (1994). This figure confirms that the higher
turbulence intensity in the outer region due to pressure gradient increasing (figure 2b)
comes from the enhanced energy of the large-scale features.

In the outer region at z/δ ≈ 0.3 (figure 6d), there is clearly more energy in the APG
case as compared with the ZPG and FPG cases. The most energetic structures in this
region centre at λx/δ ≈ 3, invariant with the pressure gradient. This was somewhat
expected after the work of Balakumar & Adrian (2007) and Monty et al. (2009) who
showed the same result when comparing pipes, channels and ZPG boundary layers.
However, the magnitudes of the energy (at any given wavelength) are very different
for each pressure gradient, making it difficult to assess the similarities or differences
in the distribution of energy across the scales. As a visual aid, it is therefore useful
to plot the energy spectra scaled with its maximum magnitude, (kxφuu)max as shown
in figure 7. This figure clearly shows that the distribution of energy in the far outer
region (z/δ = 0.3) is the same for all three pressure gradient cases. This supports the
conjecture of Bradshaw (1967b) that the large scales can be considered as universal
in shape, changing only by velocity and length scale factors. The data here imply that
the relevant length scale is the boundary layer thickness, however, the velocity scale is
not Uτ (nor U1 as noted in figure 3). The relevant velocity scale is beyond the scope
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FIGURE 7. Normalized premultiplied energy spectra of streamwise velocity fluctuation at
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of this investigation as data over a greater range of pressure gradients and Reynolds
numbers would be required.

Returning to the APG spectra in the log-region (figure 6c), the λx/δ ≈ 3 structures,
so dominant in the far outer region, also dominate in the log region, such that the
λx/δ ≈ 6 peak observed in ZPG boundary layers is overshadowed by these structures.
This could be interpreted as meaning superstructures are not shortened by the APG,
but rather there are more shorter structures of length λx/δ ≈ 3 in the log region for
such pressure gradients.

It is noted that so far a local convection velocity has been used, which may tend
to distort the energy of the large scales. Monty et al. (2009), del Álamo & Jiménez
(2009) and Chung & McKeon (2010) have shown that the large-scale motions move
faster than the mean velocity near the wall, such that near-wall spectra obtained by
assuming a convection velocity are corrupted by the inappropriate use of the local
mean velocity for Uc. Furthermore, it could be argued that the velocity scale of the
large eddies should be a velocity representative of the outer region, rather than Uτ .
Therefore, the energy spectra from four selected wall-normal locations are reproduced
in figure 8 scaled with the free stream velocity and using Uc = 0.82U1 (Dennis &
Nickels 2008). In the near-wall region, z+ ≈ 15, the energy of the large wavelengths
agrees much better between the three pressure gradient cases. This confirms that the
large-scale structures do scale with a velocity significantly higher than the friction
velocity and convect faster than the local mean. However, U1 is obviously not a
relevant velocity scale for the dominant small-scale motions near the wall. At all other
wall-normal locations, the overall picture is essentially the same as in figure 6, except
that the large-scale energy differences are reduced. It is noted that a variety of other
scalings could have been used (as summarized and analysed by Maciel, Rossignol
& Lemay (2006)). The main reason for omitting such analyses is that such scaling
arguments are not ideal to identify changes in energy spectra since these scalings are
either undefined or unfamiliar in the ZPG case and do not collapse either the high or
low wavelengths of the spectrum. In the interest of attempting to understand variations
of the APG and FPG relative to the ZPG case, scaling is limited to viscous or outer
scaling as presented so far.
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FIGURE 8. Premultiplied energy spectra of streamwise velocity fluctuation kxφuu/U2
1 at

selected wall-normal locations: ♦, APG; �, ZPG; and ◦, FPG. The temporal spectra are here
converted into spatial spectra using Taylor’s hypothesis using λx = 0.82U1/f : (a) z+ ≈ 15; (b)
z+ ≈ 100; (c) z+ ≈ 3.9Re1/2

τ ; (d) z/δ ≈ 0.3.

The energy spectra analysis presented here reveals that the most influenced features
in boundary layers subjected to pressure gradient are at the larger scales associated
with the outer region. Specifically, large-scale motions are amplified in the APG
boundary layer, whereas they are attenuated in the FPG case (relative to the wall
friction). Data at a range of mild pressure gradients indicate the phenomena seen here
strengthen as the magnitude of the pressure gradient increases; namely, the large-scale
energy increases with increasing APG (as noted by Monty et al. 2011) and decreases
with increasing FPG. These data were omitted for clarity and brevity. The interaction
between these large-scale structures and the small-scale structures near the wall is
considered in the following section.

3.4. Scale relationship
Mathis et al. (2009a) used a scale decomposition and the Hilbert transformation to
develop a tool to quantify the amplitude modulation effect. In that study, it was shown
that the near-wall small-scale structures are strongly amplitude modulated by the
large-scale motions associated with the log-layer. Furthermore, it was shown that the
amplitude modulation effect increases significantly with increasing Reynolds number,
which was mainly due to the strengthening of the large-scale features with Reynolds
number. Since it is observed here that there are strong differences in the large-scale
content when the pressure gradient changes, there are expected consequences for the
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FIGURE 9. (a) Decomposition of the broadband turbulent intensity profile u2/Uτ
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modulation (AM): ♦, APG; �, ZPG; and ◦, FPG. The vertical lines represent the locations
of zero amplitude modulation, dashed-dot-dotted line for APG, dash-dotted line for ZPG and
dashed line for FPG.

amplitude modulation imparted by the big structures onto the small-scale events. The
first step to analyse the scale relationship is to decompose the fluctuating velocity
component into a small- and a large-scale component. This is done by applying a
cut-off wavelength pass-filter below and above a carefully chosen length scale. As
highlighted by Mathis et al. (2009a,b), the cut-off wavelength should always be
selected according to the premultiplied energy spectra map. Indeed, the purpose of
the scale decomposition is to separate events related to the small-scale motions (e.g.
the ‘inner-peak’ contributors), from large-scale structure events (e.g. the ‘outer-peak’
contributors). Accordingly, a cut-off length scale λx = δ has been chosen. Observing
figure 5(a–c), this is a suitably located cut-off scale for all three flows, as it appears to
best separate the small and large scales.

Figure 9(a) shows the small- and large-scale components of the decomposed
turbulence intensity profile u2/Uτ

2, for all three flows. The small-scale components
are represented by the open symbols, while the solid symbols depict the large-
scale components. Close to the wall, the small-scale component appears to collapse
relatively well around the inner-peak location (z+ ≈ 15). It should be emphasized
that the observed discrepancy for the FPG case is similar to that observed in the
unfiltered intensity profiles, shown in figure 2(b). In the outer region, it is observed
that the small-scale component becomes more energetic as the pressure gradient
increases, which likely is due to the varying shear in the outer region for each
flow case. That is, the mean velocity profile is well known to increase in gradient
in the wake region as the pressure gradient rises from FPG to APG (see figure 2a)
and this increased shear should lead to increased small-scale energy. However, the
small-scale behaviour is partly attributable to insufficient separation of scales on
the scale decomposition. For example, the contours of the outer-energetic peak in
figure 5(a) extend toward the shorter wavelengths, even below λx ≈ δ. This is more
pronounced in the APG case compared with the ZPG and FPG cases. Of course, any
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leakage below the cut-off filter will result in increased contributions to the small-scale
intensity. Higher-Reynolds-number studies, beyond the capability of our facility, would
be required to improve the scale decomposition. Regardless of the decomposition
issues, the large-scale component clearly demonstrates that most of the increase in
streamwise turbulence intensity (figure 2b) is due to the large structures. This is
especially notable in the APG boundary layer, where the energy markedly rises in
comparison with other flows. It is also observed that the increased energy of the large-
scale structures penetrates deep into the boundary layer, with significant large-scale
energy augmentation observed close to the wall (z+ < 30). However, the large-scale
component shown in figure 2(a) is also affected by insufficient scale separation, so
higher-Reynolds-number data would be needed to establish the veracity of the double
peak observed in figure 2(a).

The corresponding degree of amplitude modulation, based on the above scale
decomposition, is displayed in figure 9(b). All three flows present a similar shape of
the degree of amplitude modulation as discussed previously in Mathis et al. (2009a):
a near-wall region highly modulated, with the degree of modulation decreasing toward
zero in the log-region and becoming highly negative in the wake region. As stated
above, Mathis et al. (2009a) found that as the Reynolds number of a ZPG boundary
layer increases, the large scales become more energetic and consequently increase the
amplitude modulation effect. Here, a similar conclusion is made; namely, the large
scales are strengthened by increasing the pressure gradient and so is the amplitude
modulation. A further observation made by Mathis et al. (2009a) is that the location of
the outer peak in the ZPG boundary layer corresponds to the geometrical centre of the
log-layer, z+ = 3.9Re1/2

τ . This location also coincides with the wall-normal location at
which the degree of amplitude modulation crosses zero. In the case of FPG and APG,
the criterion of the geometrical centre of the log-region does not hold, as the extent
of the logarithmic region is affected by the pressure gradient (it may even disappear
in the case of strong APG). However, it is interesting to note that the wall-normal
location z+AM=0 in figure 9(b) still seems to correspond well to the wall-normal location
of the outer peak shown in figure 5. The vertical dash-dotted lines in figure 5(a–c)
represent the location z+AM=0, which appears to roughly follow the site of the highest
energy in the outer region of the spectra map. This observation further supports
Bradshaw’s idea of the universal structure of the large scales in the outer region, at
least in the cases of mild pressure gradients.

As mentioned, the scale separation may not be sufficient at the present Reynolds
number (Reτ ≈ 3000) to fully separate the large from the small scales (particularly for
the APG boundary layer). Collecting data in all three cases of pressure gradient at
equally higher Reynolds number remains a challenging goal. The database analysed
here has nevertheless been useful in providing an insight into the interaction between
the large and small scales of boundary layers subjected to pressure gradients.

4. Conclusions
A unique comparison of three turbulent boundary layers exposed to three different

pressure gradients has been undertaken to identify the similarities and differences in
the structure of each flow. To ensure the comparison is valid, each boundary layer
evolved from the same nominal initial condition; namely, a ZPG boundary layer with
Reτ ≈ 2600.

A statistical analysis showed the usual strengthening of the mean velocity wake as
the pressure gradient rose from FPG to APG. The turbulence intensity measurements



Pressure gradient effects on the large-scale structure of boundary layers 495

were unique in that the non-dimensional sensor length was kept constant such
that measurement spatial resolution effects did not corrupt the comparison between
experiments. The data showed an increasing intensity throughout the layer, most
notably in the outer region. An analysis of the production of turbulence energy showed
that it is the combination of mean shear and large-scale activity that leads to this rise
in turbulence intensity.

The structure of the flow was investigated through a spectral analysis that revealed
an increase in large-scale, outer-region activity as the pressure gradient increased from
favourable to adverse. Although there is an overall increase in energy in the far outer
region, the distribution of energy (i.e. shape of the spectra) is the same for all flows,
suggesting that the large-scale motions have not changed in character, only in number
and/or strength.

The modulation of the small scales by the large was found to be affected by the
pressure gradient. Owing to the increasing large-scale energy with pressure gradient
(from FPG to APG), the modulation effect was found to increase accordingly. That
is, there appears to be a stronger near-wall footprint of the large-scale structures
in the APG case compared with the ZPG and FPG cases. Interestingly, the wall-
normal location of the zero-crossing of the amplitude modulation (the switch from
amplification of the small scales to attenuation shown in figure 9b) varies significantly
with pressure gradient, yet in all cases follows closely the location of the large-scale
energetic peak.

Finally, the authors gratefully acknowledge a comment by a reviewer of this article
who pointed out that the effects of the pressure gradient on the large-scale energy
signature appear to be similar to the effect of the Reynolds number in ZPG turbulent
boundary layers (Hutchins & Marusic 2007a; Mathis et al. 2009a). To confirm this
would require a challenging investigation at significantly higher Reynolds number, in
order to separate both effects.
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