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Abstract

The effect of limited spatial resolution for hot-wire anemometry (HWA) is investigated by
analysing the two-dimensional energy spectra from direct numerical simulation (DNS) of
turbulent channel flow at Re,; =~ 950. Various spanwise filter lengths are applied to the
streamwise velocity components in order to mimic the limited spatial resolution of a
single-normal hot-wire experiment. Clear attenuation of the small-scale DNS energy is
observed as the filter length is increased and good agreement is noted between the missing
energy from filtered DNS and that from hot-wire experiments over a range of sensing lengths.
The missing energy in the near-wall region is shown to be highly anisotropic in nature, thus
bringing into question existing correction schemes that rely on small-scale isotropic flow
assumptions. An empirical model of the missing streamwise component energy spectra is
formulated, as a function of wire length, and is shown to be useful as a new correction function
for the missing energy and streamwise turbulence intensity at the near-wall energetic peak.

Keywords: hot-wire anemometry, spatial resolution, energy spectra, wall-bounded turbulence

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The accurate measurement of first- and second-order statistics
in a turbulent boundary layer is important in order to
further advance the fundamental knowledge in this area.
Investigations of flow control, heat transfer and attempts to
produce more accurate theoretical models all rely on an ability
to accurately measure statistics in the near-wall region of these
flows. Though novel optical techniques (such as laser Doppler
velocimetry [1] and particle image velocimetry [2]) are now
commonly employed to measure statistics in turbulent flows,
hot-wire anemometry (HWA) still remains the most popular
experimental technique for turbulent boundary layer research
given its unsurpassed temporal and spatial resolution. Even
though HWA technology and methodology has continued

0957-0233/09/115401+10$30.00

to improve, there have been discrepancies in measurements
reported in the literature by different groups of researchers.
Insufficient spatial resolution is known to affect the accuracy
of hot-wire measurements and could account for some of the
discrepancies in published results. The earliest report on
effects of spatial resolution is by Dryden et al [3]. Later, this
work was extended by Frenkiel [4], Wyngaard [5], Johansson
and Alfredsson [6], Ligrani and Bradshaw [7], Citriniti and
George [8], Chew er al [9] and most recently Hutchins er al
[10].

Of these, perhaps the most well-known and well-cited
study is that by Ligrani and Bradshaw [7] (henceforth referred
to as LB87) which details an extensive study of the effects
of wire length, /, on the data obtained from single-normal
hot-wire experiments. The measurements of LB87 were

© 2009 IOP Publishing Ltd  Printed in the UK
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carried out at Reynolds number based on momentum thickness,
Rey = 2620 and at limited distances from the wall. Since the
measurements were conducted using single-normal hot-wires,
the conclusions were limited to the streamwise component
of velocity. It was reported that with a viscous-scaled wire
length (I*) less than 20 the error in the measured root-mean-
squared turbulence intensity is less than 4% (the superscript
‘+” denotes scaling with the viscous length scale, v/ U,, where
v is viscosity and Uy is friction velocity). LB87 also suggested
that the length-to-diameter (//d) should be greater than 200
to isolate the effect of conduction; similar findings have been
reported by Chew et al [9].

The attenuation in turbulence intensity as a result of the
effect of wire length has led workers to formulate corrections
for the turbulence measurements based on streamwise
information and the assumption of local isotropy [5]. In
formulating models to estimate spatial resolution errors for
various probe configurations, Ewing and George [11] observed
that assumptions of isotropy could greatly affect the predicted
result. In order to obtain a more complete picture of the effects
of spatial resolution for a single-normal hot-wire sensor, it is
imperative to consider the width of the energetic fluctuations,
as compared to the spanwise integral length of the sensor
element. Since isotropic flow assumptions are not applicable
in turbulent boundary layers, this requires spectral information
in the spanwise direction (i.e. we need information about
the energy contribution at each spanwise wavenumber, k).
In general, such information is not readily available from
experiments. On the other hand, spanwise information can
be readily obtained from DNS data. Studies such as those
conducted by Abe et al [12] and del Alamo et al [13] have
shown that the spanwise spectral information of the streamwise
velocity fluctuation is a complex function of distance from
the wall and Reynolds number.

Previous studies have been conducted using DNS data to
evaluate hot-wire performance in wall-bounded turbulence.
This includes the study of Suzuki and Kasagi [14] who
used DNS from a turbulent channel flow at low Reynolds
number to quantify errors in near-wall hot-wire measurements,
and Moin and Spalart [15] who used DNS data from a
turbulent boundary layer to estimate the accuracy of cross-
wire probes. More recently, Burattini et al [16] used DNS
data to investigate the effect of spatial resolution on the hot-
wire measured velocity derivative skewness in homogeneous
isotropic turbulence. Also Vukoslavcevi¢ et al [17] employed
a DNS database to simulate spatial resolution effects (on both
velocity and velocity gradient measurements) made with a
multi-wire sensor. Other studies using DNS for hot-wire
corrections are reviewed by Moin and Mahesh [18].

In this paper, the effect of hot-wire spatial resolution
in wall-bounded turbulence will be investigated using recent
channel flow data from the DNS study of del Alamo et al
[13] at a moderately high Reynolds number (Re, = 934).
The DNS data are spatially averaged (filtered) in the spanwise
direction in order to simulate the averaging encountered by

! Here we define the streamwise, spanwise and wall-normal directions as x, y
and z, respectively with the corresponding fluctuating velocity components
u,vand w.

different single-normal hot-wire lengths. The experimental
data reported in LB87 are compared against the filtered DNS
data, which are nominally at the same Reynolds number. One
should note that the experiment carried out by LB87 is in a zero
pressure gradient turbulent boundary layer whilst the DNS data
are from a turbulent channel flow. It is commonly assumed
that at sufficient Reynolds numbers, the near-wall region will
be similar in channels and boundary layers. However, recent
studies have revealed differences in the large-scale structure
between internal and external geometries [19, 20]. These
differences are most prominent in the outer flow but also
seem to extend into the near-wall region. It is important
to remain aware of these differences between internal and
external geometries when considering the comparison between
the filtered DNS and the experimental results of LB87.

This study is limited to wall-normal locations of z* &~ 15
and 120. It is widely accepted that the peak turbulence
kinetic energy occurs at a wall-normal location of z* ~ 15.
This peak in energy is mainly due to the near-wall cycle of
streaks and quasi-streamwise vortices as documented by Kline
et al [21] and Jiménez and Pinelli [22]. The wall-normal
location z* = 120 is selected since, at this Reynolds number,
it represents the approximate mid-point of the logarithmic
region.

Hutchins e al [10] showed the effects of attenuation on the
turbulence intensity profile (uz / U 3) due to insufficient spatial
resolution, demonstrating that the turbulence intensity is a
function of both the hot-wire length and the Reynolds number.
In the same paper, they investigated the one-dimensional
streamwise energy spectra for different wire lengths and
highlight the missing spectral energy due to attenuation.

In this study, we characterize the lost spectral energy
due to insufficient spatial resolution in a two-dimensional
wavenumber space and provide an empirical correction factor
to account for the lost turbulent intensity as a function of wire
length.

2. Methodology

The DNS data used in this study have a friction Reynolds
number, Re; = U.§/v = 934, where § is the channel half-
height. The size of the computation box is Ly x L, x L, =
8md x 3w x 28 with grid points N, x N, x N, = 3072 x
2304 x 385 in the x, y and z directions. The streamwise
and spanwise grid spacings are Ax* ~ 7.6 and Ay* ~ 3.8,
respectively. In the wall-normal direction, the grid spacing
increases from Az* =~ 0.03 at the wall to a maximum
Az" ~ 7.6 at the centre of the channel (with N, Chebychev
polynomials). Further details of the DNS and the numerical
method can be found in del Alamo ez al [13].

The attenuation due to different wire lengths is simulated
by spatially averaging the DNS data in the spanwise direction
according to the desired pseudo wire length (in viscous length).
The spanwise grid spacing of the DNS datais d; ~ 3.8; hence,
the filter lengths are limited to integer multiples of dj. The
filter lengths considered for the DNS datarange from[* ~ 11.5
(3d;f), 19.1 (de*), 343 (9d;f) and 57.3 (ISd;). The filtering
process is performed by spanwise averaging the instantaneous
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streamwise velocity (U) across the desired filter length. The
broadband intensity and energy spectra are then calculated
from the resulting filtered velocity fields. The streamwise
turbulence intensity (denoted by ﬁJr) has been calculated from
the filtered DNS data at all 192 wall-normal locations. Energy
spectra are calculated at z+ = 15 and z* = 120. The one-
dimensional streamwise premultiplied energy spectra is given
by

Puu (k. 2) = ki (i (ky, 20" (ky, 2)). ey

The premultiplied two-dimensional energy spectra can be
calculated using

Do (e, ky, 2) = kuky (it (ks ky, )07 (ke ky, 2)), @

where k., and k, are the streamwise and spanwise
wavenumbers, () denotes spatial and temporal average, i
denotes the Fourier transform of u (which can be the filtered or
unfiltered velocity field) and * denotes the complex conjugate.

Compared to experimental methods, two-dimensional
energy spectra can be readily obtained from DNS, which
provide volumetric data of all three velocity components.
However, the convergence of the two-dimensional energy
spectra are difficult to achieve, especially at greater wall-
normal distances where large-scale structures are dominant,
and yet occurrences of these largest scales are limited
within the available DNS volumes. In order to ensure
better convergence of the two-dimensional statistics, we have
employed an ‘overlapping’ method within the data plane of
interest (z+ ~ 15 and 120) and a composite construction of
the final spectra using variable window sizes. A window (size
Xwin X Ywin) 18 selected on the xy plane and the two-dimensional
spectra calculation is performed within that window. This
window is then shifted in the streamwise direction, by a
preset Ax which overlaps the previous window location (by
Xwin — Ax), and the process is reiterated. The same procedure
is applied in the spanwise direction with a preset Ay (spanwise
overlap ywin — Ay). This process is reiterated until the entire
data plane is processed. The mean energy spectra for that
individual window size is then computed. For a given window
size, this shifting and overlapping procedure provides more
realizations from the available set of data, leading to improved
convergence of the ensemble averaged spectra. This process is
repeated for different window sizes, starting from the smallest
up to4md x 1.576. The spectra for each window size are then
compiled into a single composite plot that covers the entire
available wavelength space, up to A, = 47§ and A, = 1.576
(A = 27 /k). The rationale for this composite technique is to
ensure that the large-scale energy spectra is captured (requiring
large xyin and yywi,) Without compromising the convergence of
the small-scale energy (which converge better with small xi,
and Yy win)-

3. Effect of the wire length on turbulence intensity

The comparison of the turbulence intensity, ﬁi for DNS data
(solid symbol) and LB87 (open symbol) is shown in figure 1.
Note that the results from DNS correspond to wall-normal
distance z* = 15 whereas data from LB87 are at z* ~ 17.
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Figure 1. Spatial averaging effect on u? " for different filter sizes,
[*, at a wall-normal distance of z+ ~ 15 (DNS) and z* ~ 17 (LB87).
The dashed line is the best fit through the DNS data set
corresponding to equation (3).

Only those data from LB87 where //d is greater than 200 are
shown in figure 1 (to isolate the effect of //d). It should also
be noted that the use of a spanwise boxcar filter to spatially
average the DNS data is an imperfect approximation of the
spatial averaging due to a real hot wire. The temperature
profile across a hot wire will produce an effective length that
is shorter than the actual length of the sensor [23]. For a
given [* we would expect the boxcar filter to be slightly more
aggressive than the filtering due to a hot wire of comparable
length. The attenuation of the turbulence intensity increases
with increasing [ as one would expect. For the data of LB87,
it can be seen that as [* exceeds 25, and the effect of spatial
resolution causes an abrupt increase in attenuation on the

turbulence intensity, ;Jr. The DNS data show a similar trend
of decreasing turbulence intensity as the filter size increases.
Ligrani and Bradshaw report that for [* < 20-25, the error in
the mean-squared streamwise broadband intensity is less than
8%. The DNS data seem to indicate that for [* ~ 19, the error
is 10%. The suggestion from the DNS data is that the error due
to viscous-scaled wire lengths O(20) is slightly larger than that
suggested in the conclusions of LB87. Similar findings were
reported in Hutchins et al [10] where the error expected for
I* = 20 is approximately 10%. Here we describe the missing
streamwise turbulent energy at z* = 15 caused by a wire of
length I* using a third-order polynomial of the form

T AP+ BIP? +CI* + D, 3)

which by least-squares regression fit returns the constants
A= -194x105,B = 1.83 x 1073,C = 1.76 x 1072
and D = —9.68 x 1072, The dashed line in figure 1 shows the
viscous-scaled turbulent energy measured with a given wire

size, defined as
—+ — +
2 __ 2 )
Up = Upcal umissing ’ (4)

2
umissing

+
scwal 18 the energy one would expect to measure in
the absence of spatial filtering (the unattenuated result). We

where u?
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Figure 2. Comparison of streamwise turbulence intensity profiles
for different filter lengths, [~ 3.8 (A), 11.5 (o), 19.1 (x), 34.3 (+)
and 57.3 (O); arrow indicates increasing filter length (I*), and the
dashed lines are at z* ~ 15 and 120 (z/§ ~ 0.12).

here assume that the original DNS data, with a spanwise
grid spacing of 3.8 wall units, are unfiltered. Using this
expression, the missing turbulence intensity can be estimated
in experimental results given the wire length.  Strictly
speaking, it is noted that this expression is true only at the given
Reynolds number. Hutchins et al [19] suggest that at z* = 15,

the measured turbulent energy u,2+ is a function of I*, Re,

+
and 1/8. However, it is noted that only uZ2, ., is a function

of Re., and they find that, provided //§ is small, the missing
+
energy u? can be approximated by a function of I*. This

missin,
would seem t(g) suggest that equation (3) might be applicable to
higher Reynolds numbers provided //§ is small (later results in
section 6 imply that this function can give reasonable
predictions over extended Reynolds number ranges, at least up

to Re; =~ 7000). To use equation (3) to correct an attenuated
—+

turbulent energy u12+ measured at z* &~ 15, one would simply

calculate u2 ’ using equation (3) and then add this back to

missing
the raw measured intensity (u12+ +) to yield the estimated true
value of turbulent intensity u2, "

In figure 2, the turbulence intensity profiles from the
filtered DNS are shown as a function of increasing filter length
I*. The direction of the arrow indicates increasing filter length.
The dashed lines are at wall-normal locations of_z: ~ 15 and
120. The peak streamwise turbulence intensity u2 is seen to
be greatly attenuated in the near-wall region at z* ~ 15 (as
shown in figure 1); however, the corresponding attenuation at
z* & 120 is significantly less. For example a filter length of
I* ~ 57.3 produces 41% attenuation at z* ~ 15, compared to
just 11% at z* ~ 120. The percentage attenuations at z* = 15
and 120 are tabulated in table 1. These findings emphasize
that limited spatial resolution has the greatest effect on the
measured turbulent energy in the near-wall region. This is
as expected since finite wire size will have the greatest effect
on the small scales, which are predominantly located in the
near-wall region.

10 F

Ao /6

102 107

10* F
103 r
A Ay/6
102 F 107!
109 10 102 10%

2t

Figure 3. Premultiplied one-dimensional energy spectra as a
function of the wall-normal location and (a) streamwise wavelength
Ay; (b) spanwise wavelength A,. The contour maps are from

bun/ Uf = 0.3 with an increment of 0.25. The dashed lines are at
the wall-normal location as in figure 2.

Table 1. Tabulated error as a percentage (%) for different wire
lengths for z* ~ 15 and 120.

Filter length Symbol u

(I (=15 ("~ 120)
3.8 (unfiltered) A - -

11.5 O 3.8 0.7

19.1 * 9.8 2.0

343 + 235 5.4

57.3 O 41.0 11.3

4. Premultiplied one-dimensional energy spectra

The premultiplied one-dimensional energy spectra of
streamwise velocity fluctuations are shown in figures 3(a) and
(b) as functions of streamwise and spanwise wavelength (A}
and )ﬁ;), respectively, and also the distance from the wall. The
premultiplied spectra are scaled with U2. The contour levels
on these energy maps show the magnitude of the premultiplied
spectra at each wavelength (y-axis) and each wall-normal
location (x-axis). Two distinctive energy peaks are observed.
Hutchins and Marusic [24] have referred to these two peaks
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Figure 4. Premultiplied two-dimensional energy spectra (unfiltered,
I* = 3.8) at (a) wall-normal location of z* ~ 15 and (b) wall-normal
location of z* & 120. The contour maps for both are from

¢* = 0.2 with an increment of 0.2.
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as the ‘inner site’, referring to the near-wall energy peak, and
the ‘outer site’, which is defined as the outer energy peak
away from the wall. In terms of streamwise wavelength (X,),
Hutchins and Marusic [24] report that the ‘inner site’ is fixed in
viscous coordinates at z* &~ 15 and A} ~ 1000, in agreement
with the present results shown in figure 3(a). The spectra as
a function of the spanwise wavelength shown in figure 3(b)
indicate that this ‘inner site’ (marked with the symbol x’) is
also fixed at A;’ ~ 120, close to the reported value for low-
speed streak spacing of 100 viscous units (e.g. Kline et al
[21]).

For the DNS channel data, figure 3 indicates that a
broad ‘outer site’ occupies the outer-scaled coordinate range
z &~ 0.15-0.26, A, ~ 10§ and A, ~ 0.75-1.25. For zero
pressure-gradient flat-plate turbulent boundary layers at higher
Reynolds numbers (Re; & 7300), Hutchins and Marusic [24]
report that the ‘outer site’ is located at z &~ 0.068 and AT = 63.
The differences observed here are explained by Monty et al
[19, 20] who show that the large-scale structures attain a
greater length (and at a greater distance from the wall) in
channel flow than that for turbulent boundary layers.

5. Premultiplied two-dimensional energy spectra at
zt =~ 15

Figure 4(a) and (b) show the unfiltered (I* =~ 3.8) two-
dimensional premultiplied u energy spectra at wall-normal

location z* ~ 15 and 120, respectively. The superscript ‘+’ in
figure 4 denotes scaling of the two-dimensional premultiplied
spectra by friction velocity (9}, = ®,,/U?). All contour
lines begin at &' = 0.2 and increase in steps of 0.2.
Comparing the two plots in figure 4, it is clear that the peak
energy occurs at larger A} and A} at z* ~ 120, as compared
to z* A 15, indicating that larger scale structures dominate
within the logarithmic region. This behaviour is as predicted
from figure 3.

Figure 5 shows the premultiplied two-dimensional energy
spectra @} atz* = 15, for different filter lengths of I* ~ 11.5,
34.3 and 57.3. Column (a) represents the filtered energy
spectra and column (b) represents the missing energy spectra.
Note that the contour levels are different for each column. The
contour scaling for column (a) is as given in figure 4 whereas
for (b), the contour levels begin at 0.02 with increments
of 0.1 (these smaller increments are used to highlight the
missing energy). As the filter length is increased, figure 5(a)
clearly illustrates the attenuation of small-scale energy in the
premultiplied two-dimensional energy spectra. The ‘inner
site’ location in the two-dimensional spectra (which for
unfiltered data is located at A} ~ 1000 and A} ~ 120) is shifted
to larger wavelengths as the filter length (/) is increased. An
arbitrary point (A; A 1200, AT ~ 200) denoted by the ‘x’
symbol is chosen to illustrate this effect. As filter length
increases from top to bottom, we see the peak shifting towards
the ‘x’ symbol. Thus, it is clear that in experiments, a larger
wire length will cause a pseudo peak in the spectra that is at
larger wavelengths than the true unfiltered ‘inner’ energetic
peak.

We can obtain a clearer understanding of the effects
of insufficient spatial resolution on the premultiplied two-
dimensional energy spectra by studying the missing energy
shown in figure 5(b) (indicating the difference between
figure 4(a) and figure 5(a)). In general, the missing energy
is seen to be centred around streamwise length scales ()\I) that
are approximately eight times longer than the corresponding
spanwise length scales ()»:') Thus the primary effect of
increasing wire size seems to be an attenuation of the elongated
streaks due to the near-wall cycle. This highlights the highly
anisotropic nature of the flow and clearly brings into question
correction schemes relying on isotropic assumptions, such as
that proposed by Wyngaard [5]. The attenuation seems to be
centred around the ‘inner site’ and for the filter sizes shown,
there is very little sign of attenuation around the outer site
at A, ~ 0.756. The ‘+’ symbol, at an arbitrary location
(A; ~ 500, k; ~ 100), is plotted in figure 5 (b) to demonstrate
that the peak-missing 2D energy shifts in a manner similar to
that shown for the peak-filtered 2D energy (a).

6. Model for missing energy

Most previous corrections for spatial resolution effects have
been based solely on streamwise information (as discussed
earlier). Here the DNS data afford us spanwise information
as well, which is critical to fully understand the spanwise
averaging effect of a single-normal hot wire of finite size.
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(a) filtered energy spectra, contour maps

are as given in figure 4, and (b) missing energy spectra, contour maps are from ®* = 0.02 with an increment of 0.1, for different filter

lengths (I*) at wall-normal location z* &~ 15.

The 2D information also enables us to separate the near-
wall small-scale events from the larger scale superimposed
energy, even at the relatively low Reynolds numbers (low-
scale separation) of the DNS data. As an example, figure 5
clearly shows that a wire of length /* = 57.3 causes some
attenuation of streamwise wavelengths at A, =~ 105. In the
absence of spanwise information, we may have incorrectly
concluded that this implies some attenuation of the ‘outer site’,
(which in figure 3 is noted to occur at A, =~ 10§). However,
the 2D spectra maps show that this attenuation at long A,
is centred at spanwise wavelengths associated with the near-
wall scales (A;' ~ 120), and there is no attenuation at the
‘outer site’.

From figure 5(b), it is observed that the missing 2D
premultiplied energy spectra resemble a shape close to a
symmetrical Gaussian along the A’y' axis, and a skewed

Gaussian along the A axis, with a slight rotation counter-
clockwise in the log—log space. Therefore, it seems promising
to model the missing ®}  energy using an empirical expression
of the form

F(L A7, I*) = Aexp (— [

(@ —ap)? N (B — ﬂo)2]>
Oy op ’
)

From curve-fitting to the filtered DNS data, we obtain the
following expressions for the constants:

A=-49x107°0") +5.5 x 1074(*?)
—0.001(") +0.0272

a = 0.9553log,, (1}) +0.2955log,, (A}) — 0.45

B = —0.2955log,, (1}) +0.9553 log,, (1}) +0.86

g = log,(3.61" +280)
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z* = 15 and for I* ~ 34.3 as modelled by the empirical equation (5)
(grey line) against DNS data (black line) at the wall-normal distance
7t~ 15.

Bo = log,((0.31" + 58)

ou = log;y (37)//D

og =0.1

C=37x107%1") — 1.5 x 107*(1*?)
+33x 10731 +0.57

D =13 x1073(*?*) — 0.2712(I%) + 17.637.

It is noted that these expressions are not a function of the
wall-normal distance (z*) and are applicable only at z+ ~ 15
(corresponding to the location of peak turbulence intensity
contribution). Equation (5) is plotted in figure 6 for [* & 34.3
(grey line) and shows a good agreement when compared
to the actual missing two-dimensional energy spectra for
I ~ 34.3 (black line). Equation (5) can be applied to
correct experimental data carried out at similar Re; and the
wall-normal distance using any hot-wire length in the range
3.8 < I* < 57.3. For correction to one-dimensional energy
spectra measured with a single-normal hot wire of a given wire
length (I*), one can integrate equation (5) across the spanwise
viscous wavenumber to obtain the following equation for the
expected missing energy:

¢:umissing )‘+ l+ /f )‘+ )L;sl+

This missing energy can then be added to the measured
1D streamwise energy spectra from the experimental results
to obtain an estimate of the true energy spectra at
* & 15.

Figure 7 verifies the validity of the lost spectral energy
prediction model using the DNS data. The dashed line shows
the unfiltered premultiplied energy spectra calculated from
the DNS database at z* ~ 15. The (—+-) line shows the
spectra calculated with a simulated wire length of /* &~ 34.3.
Clearly there is substantial missing energy for the longer
wire as compared to the unfiltered data, particularly at the

dlog (A}). 6)

C C Chin et al
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- - - = Unfiltered (I" ~ 3.8)
—+— Filtered (I = 34.3)
20 L Missing energy, eq. (6) |
—e— Corrected  energy
spectra
1.5+
4
uu
1.0 +
0.5
0 T . ;
10! 102 10° 10

Figure 7. Comparison of the streamwise DNS-corrected energy
(—e—) composed of missing energy (——), based on equation (6), and
filtered energy (——) using wire length I* ~ 34.4, against the
unfiltered data (solid line, —) at the wall-normal distance z* ~ 15.

smaller scales. The (——) line shows equation (6) evaluated
for I* ~ 34.3, indicating the predicted missing energy for
the given wire length. If the prediction is valid, this line,
when added to the filtered spectra, should return an energy
distribution close to the original unfiltered data. The (—e—)
line is the sum of these two profiles, showing good agreement
with the unfiltered DNS energy spectra.

For the model to be practical, it also requires a comparison
with data at a different (and higher) Reynolds number than
that of the DNS. This is done here by applying the model
to the boundary layer data of Hutchins et al [10]. The
Reynolds number for the boundary layer flow is Re; =~ 7300
which is eight times greater than that of the DNS (Re, ~
934). Monty et al [19, 20] have shown obvious differences
between the large-scale structures in internal and external
geometries. However, if we assume that it is mostly small-
scale energy that is affected by spatial attenuation (which
figure 5 indicates), and that these small scales are universal
across channels and boundary layers, we are able to tentatively
extend the application of equation (6) to turbulent boundary
layers at higher Reynolds numbers. Figure 8 demonstrates
exactly how equations (5) and (6) can be used to correct
the measured energy spectra from experiments suffering from
spatial resolution effects. Figure 8(a) shows experimental
hot-wire measured spectra from Hutchins and Marusic [24]
at z¥ ~ 15 and Re;, ~ 7300 for three different wire
lengths (I* ~ 11,22 and 80, shown by the solid, dashed
and dot-dashed lines, respectively). Clearly, the increase in
wire length has caused substantial attenuation of the small-
scale energetic fluctuations. Figure 8(b) shows the estimated
missing energies for each wire length as calculated from
equation (5) for the given [* and integrated according to
equation (6). When these missing energies are added to
the original experimental data of plot (a), it is seen that the
resulting three corrected energy spectra (shown in figure 8(c))
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Figure 8. A comparison of the corrected streamwise energy spectra
for boundary layer experimental data at Re, =~ 7300 for three
different wire lengths of I* ~ 11 (black solid line —), [* ~ 22 (red
dashed line —) and [* ~ 80 (blue dot-dashed line — - —). (a) shows
the actual experimental results, (b) shows the missing energy using
equation (6) and (c) shows the corrected energy spectra which is the
summation of (a) and (b).

are in very close agreement. All corrected curves have
slightly higher peak energy levels than the original /* ~ 11
experimental data. This is as expected, since equation (5)
corrects to an assumed wire length of [* = 3.8. Provided
/8 is suitably small, application of equation (5) can correct
experimental spectra to any simulated wire length [*. For
example, to correct a measured experimental spectrum (made,
say, with a wire of length [* = 22, as shown by the red dashed
curve in figure 8(a)) to the result expected of a different length
wire (say [* = 11), we would simply apply equation (5) to
obtain the missing energies for [* = 22 and for I* = 11.
The difference between these two results, when added to
the original measured spectrum, would yield the predicted
spectrum for a wire of length [* = 11.

By calculating the double integrand of the missing
energy model (equation 5) with respect to the spanwise
and streamwise length scale (k;f and A}), one can estimate
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Figure 9. An estimate of the DNS turbulent kinetic energy based on
the integral of the lost energy approximation of equation (5) (—+—).

The predicted e (—e—) is plotted using equation (3).

the missing broadband energy (;+) as a percentage of the
true turbulent kinetic energy. This result is plotted against
equation (3) in figure 9. The results vary slightly, but
in general, the missing energy model (based on the 2D
premultiplied energy spectra) seems to correctly describe the
attenuation in the broadband intensity, with a maximum error
of less than 10% occurring at [* ~ 57.3.

7. Premultiplied two-dimensional energy spectra at
zt = 120

In figure 10, the filtered and missing premultiplied two-
dimensional energy spectra of the fluctuating ¥ component
is shown for different filter lengths at wall-normal location
7" & 120. The columns and contour maps are as in figure 5.
The peak of the filtered premultiplied two-dimensional
energy spectra (column @) seems to remain in approximately
the same location as the filter length is increased,
contrary to observations closer to the wall in figure 5.
At zt = 120, the most energetic fluctuations have longer
characteristic length scales and the contribution due to small-
scale structures is negligible; thus, the effect of wire length is
less pronounced.

The missing two-dimensional energy spectra are shown
in figure 10(b), with the magnitude of the missing energy
seen to be notably less than that occurring for z* = 15 in
figure 5 (consistent with the differences in turbulence intensity
shown in figure 2). Generally, the results from the missing
energy plots of figure 10 indicate that attenuation due to
spatial resolution has less effect on the two-dimensional energy
spectra as we move further away from the wall (provided that
1/6 is not too large). It is also clear that a modified skewed
Gaussian model (similar to equation (5)) could potentially also
describe the missing two-dimensional energy at z* = 120.
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Figure 10. Premultiplied two-dimensional energy spectra of streamwise fluctuating velocity, ¢
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(b) missing energy spectra, for different filter length (I*) at wall-normal location z* ~ 120. Contour levels are as figure 5.

8. Conclusions

The effects of insufficient spatial resolution are investigated
through filtering of DNS channel flow data. The turbulence
intensity of the filtered streamwise fluctuating component from
the DNS is compared with experimental data [7] at a similar
Reynolds number (measured with different wire lengths), and
similar trends are observed (with increasing attenuation of
the turbulence intensity as wire length [* increases). The
premultiplied two-dimensional energy spectra are examined
for different filter lengths at wall-normal locations z* ~ 15
and 120. At z* = 15, it is noted that the attenuation is
largely confined to the small-scale near-wall structures, and
any superimposed large-scale energy is largely unaffected
up to filter lengths of /* ~ 57. It is also noted that the
missing two-dimensional energy can be well-described by
a relatively simple modified 2D Gaussian bump (in log A,
and A,). Assuming universality of the near-wall structure,

this missing energy can be assumed to be representative of
the attenuation owing to a given viscous-scaled wire length
at any Reynolds number. Based on these observations, a
missing energy model is proposed. This model is shown to be
effective at correcting high Reynolds number (Re,; =~ 7300)
experimental one-dimensional energy spectra at z* = 15. It
is noted that this approach is only valid for situations where
the ‘outer site’ (the large-scale energy) has been unaffected by
spatial resolution. Thus, this approach will not work for large
values of / /5. The model has been formulated using DNS data
up to [* ~ 57. Beyond these values, the accuracy of the model
will likely degrade (although experimental data have proven
the accuracy of the model up to * & 80). Theoretically, within
these limits, this model can be used to correct experimental
energy spectra for the effects of attenuation due to spatial
resolution at any Reynolds number. At present, such a model
is only formulated at a single wall-normal position (z* = 15).
However, results at z* = 120 indicate that this approach can
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be expanded to provide a correction to energy spectra at any
distance from the wall. In theory, DNS data can provide the
information required to extend this model to any value of z*.
However, such an undertaking (which involves computing 2D
energy spectra for several filter lengths at each wall-normal
location) was considered beyond the scope of the present work.
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