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Effect of dual plane PIV resolution on determination

of scale energy budgets in wall turbulence

N. Saikrishnan, I. Marusic, E.K. Longmire

Abstract The dynamics of the near wall region at different scales have been analyzed recently
for a Direct Numerical Simulation (DNS) of a channel flow at friction Reynolds number Reτ = 180
using a generalized form of the Kármán-Howarth equation. The present work analyzes the scale-by-
scale dynamics of wall-bounded flows at higher Reτ using data obtained from dual plane Particle Image
Velocimetry experiments. Previous experiments were conducted in a zero-pressure-gradient turbulent
boundary layer at Reτ = 1160, resolving scales down to 25 wall units. The results of the scale analysis
were compared to DNS data of a channel flow at Reτ = 934. It was observed that the resolution of
these experiments was not sufficient to capture the velocity gradients accurately enough to sufficiently
determine the scale dynamics. Therefore, higher resolution dual plane PIV experiments were conducted
in similar experimental conditions with a resolution of 10 wall units. The scale-by-scale energy budget
obtained from this high resolution data showed a much better balance between the various terms and
justified the use of higher resolution to accurately determine the velocity gradients. A simple error
propagation analysis was performed to enable the choice of laser sheet separation for dual plane PIV
experiments and it revealed that this parameter is a tradeoff between the truncation error of the first
order approximation and the random error of the quantities measured.

1 Introduction

Wall-bounded turbulent flows have been studied using variations in physical space and
in scale space. In physical space, the near wall region is classified into the viscous sub-
layer, the buffer region, the logarithmic region and the outer region (Townsend, 1976).
The viscous sub-layer and buffer region are the regions of largest production of turbulent
kinetic energy and relatively low dissipation, implying a flux of energy towards the upper
regions. The logarithmic region is an equilibrium region, where the production and
dissipation match each other, with a nominally constant flux of energy transfer from
close to the wall to the outer region of the boundary layer.

In the space of scales, the classical Richardson cascade was one of the earliest attempts at
addressing the interaction of eddies of varying sizes. According to this theory, energy is
injected into the flow at the largest scales, transferred to smaller and smaller eddies, until
the energy is finally dissipated by the action of viscosity. Further, Kolmogorov (1941)
stated that “in the limit of infinite Reynolds numbers, all the possible symmetries of the
Navier-Stokes equation, usually broken by the mechanisms producing turbulence, are re-
stored in a statistical sense at small scales and away from boundaries.” (Monin & Yaglom,
1975; Frisch, 1995), implying the isotropy of turbulent flow at the smallest scales. Also,
it was argued that in the logarithmic layer, the longitudinal energy spectrum is propor-
tional to the wavenumber to the power −5/3 (k−5/3), which was experimentally verified
by Saddoughi & Veeravalli (1994). Beyond this inertial range, there is an exponential
decay in energy, indicating dissipation by the action of viscosity.
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The challenge lies in describing the scale-dependent dynamics in the presence of spatial
inhomogeneities, for which a more general approach combining these two seemingly par-
allel ideas is required. The Kármán-Howarth equation represents an evolution equation
for the longitudinal autocorrelation function and provides the basis for the Kolmogorov
equation for stationary, homogeneous, isotropic turbulence. A generalized version of the
Kolmogorov equation for inhomogeneous conditions was derived by Hill (2002) and this
provided the framework for understanding the interaction between the various processes
occurring at different regions of the boundary layer over a wide range of scales. This
equation was the basis of an analysis by Marati et al. (2004), where the equation was
appropriately simplified for a Direct Numerical Simulation (DNS) of a turbulent channel
flow, and he contributions of different processes in the energy budget in a low Reynolds
number flow were calculated.

The present study is an extension of this work, attempting to analyze and understand the
scale dynamics occurring at larger Reynolds numbers using experimental and numerical
data. The experimental data are obtained using dual plane Particle Image Velocimetry
(PIV), which enables the determination of the complete velocity gradient tensor in a
plane. These experiments provide an opportunity to understand the dynamics of scale
energy at higher Reynolds numbers than discussed in the previous work by Marati et al.
(2004). In this paper, section 2 will describe the experimental setup and parameters of
the numerical simulation. Section 3 will discuss the specific form of the Kármán-Howarth
equation for the current analysis, section 4 will discuss some results from the dual plane
PIV experiments and DNS data, and section 5 will discuss conclusions and scope for
future work.

2 Description of PIV & DNS datasets

The dual plane Particle Image Velocimetry (PIV) datasets were obtained from experi-
ments conducted in a suction-type boundary layer wind tunnel. In the first set of ex-
periments (LRPIV1 & LRPIV2), conducted by Ganapathisubramani et al. (2005), the
smallest scale resolved was about 25 wall units. A second set of experiments (LRPIV3
& LRPIV4) was conducted at two additional wall-normal locations using the same res-
olution. The third set of experiments (HRPIV) resolved scales down to about 10 wall
units. All measurement planes were located 3.3 m downstream of a trip wire in a zero-
pressure-gradient flow, where the boundary layer thickness δ was measured to be 70.8
mm. The streamwise, wall-normal and spanwise directions are along the x, y and z axes
respectively and the fluctuating velocity components along those three directions are
represented as u, v and w. All quantities are normalized using wall variables, i.e. the
skin friction velocity Uτ and coefficient of kinematic viscosity ν, and are denoted with a
superscript +. The relevant experimental parameters are listed in Table 1. For the sake
of understanding, the following description will discuss the LRPIV1 experiments. It must
be noted that the other LRPIV and HRPIV experiments have an almost identical setup
and processing technique except for the resolution, exact field of view and wall-normal
locations.

The experiments conducted used a three-camera polarization-based dual plane PIV sys-
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Reτ y+ y/δ ∆x+ ∆z+ Lx/δ Lz/δ

LRPIV1 1160 110 0.095 24.5 24.5 1.05 1.05

LRPIV2 1160 574 0.49 25.7 25.7 1.05 1.05

LRPIV3 1160 328 0.28 25.3 25.3 1.00 1.00

LRPIV4 1160 820 0.70 26.7 26.7 0.97 0.97

HRPIV 1100 100 0.091 10.0 10.0 0.46 0.46

DNS 934 110 0.12 11.4 5.7 8π 3π

Table 1: Parameters of the experimental and numerical datasets.

(a) (b)

Figure 1: (a) Photograph of the optical setup to generate the two light sheets. (b) Photograph of the cameras
and filters.

tem as shown in Figure 1. The setup consisted of two independent PIV systems which
captured images of olive oil droplets of size ∼ 1µm, generated using eight Laskin noz-
zles upstream of the flow. The first system was a stereoscopic setup which is used to
measure all three velocity components within a plane, while the second system was a
conventional PIV system that measures the in-plane velocity components in a neighbor-
ing plane. Simultaneous measurements were performed in the two planes by using the
polarization property of laser light sheets to isolate one camera system from the other
(Kähler & Kompenhans, 2000; Ganapathisubramani et al., 2005). The experiments here
were conducted in the logarithmic region of the turbulent boundary layer, at a location
of y+ = 110.

The stereoscopic system used TSI Powerview Plus 2k× 2k pixel resolution cameras with
Nikon Micro-Nikkor 105 mm lenses while the second system used a Kodak Megaplus
1k × 1k pixel resolution camera with a Nikon Micro-Nikkor 60 mm lens. In order to
isolate the two systems from each other, the cameras were fitted with appropriate optical
filters. The filters on the stereoscopic system allowed only horizontally polarized light
to pass through, whereas the filters on the plane PIV system allowed only vertically
polarized light to pass through. The laser sheets were generated by a Spectra-Physics
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PIV-400-15 Nd:YAG laser system, pulsing about 320 mJ/pulse at 15 Hz. The beams
coming out of the laser were horizontally polarized, so in order to generate two sheets of
orthogonal polarization, the beams were first split into two using a CVI Laser 50 − 50
non-polarizing beam splitter. Then, one of the beams was passed through a CVI Laser
half-wave plate to rotate the polarization by 90◦. This vertically polarized beam was used
to generate a sheet which was seen only by the plane PIV camera, while the horizontally
polarized beam was used to generate a sheet for the stereo system. The spacing between
the two sheets was adjusted using a micrometer traverse.

The vector fields for the stereoscopic cameras were obtained using the adaptive central
difference technique of Wereley & Meinhart (2001) using TSI Insight 3G. To obtain the
vector fields, the images obtained from PIV were interrogated using a two-frame cross-
correlation algorithm with discrete window offset. Firstly, using coarse 128 × 128 pixel
windows, the mean displacement for each window was calculated. Next, with a coarse
64× 64 pixel window and the second window offset by the mean displacement, a vector
field was obtained. This image was again interrogated using a 32× 32 pixel window. At
this step, the interrogation box in frame 1 was offset upstream and the frame 2 box was
offset downstream by half the mean displacement calculated in the previous step. Thus,
the final interrogation window size was 32×32 pixels and a 50% overlap was used. Due to
the use of the overlap during PIV interrogation, the smallest actual scale resolved is twice
the spacing of the vectors. The data from the 1k × 1k cameras were also interrogated
using the same method described above. In order to match the resolution between the
two systems, the interrogation in this system proceeded from 64 × 64 pixels down to
16× 16 pixels.

The vector fields were validated using a standard Gaussian engine that removed vectors
with values outside 4 standard deviations from the mean. Any missing vectors were
interpolated using a 3 × 3 local mean technique. The number of spurious vectors was
close to 5% in the stereo system and about 3% in the single camera system. The data
from the two planes were used to compute the entire velocity gradient tensor in the lower
plane. For the in-plane gradients, a second-order central difference scheme was used,
while a first-order forward differencing scheme was used to calculate the streamwise
and spanwise velocity gradients in the wall-normal direction. Finally, the wall-normal
gradient of the wall-normal velocity was recovered from the continuity equation. Thus
the complete velocity gradient tensor was obtained using this experimental technique.
The uncertainties in each quantity are discussed in detail in Ganapathisubramani et al.
(2005).

The DNS dataset under consideration here is a numerical simulation of a fully developed
channel flow. The numerical technique involves the integration of the Navier-Stokes equa-
tions in the form of evolution problems for the wall-normal vorticity and the Laplacian of
the wall-normal velocity. For spatial discretization, Chebychev polynomials are used in
the wall-normal direction, while de-aliased Fourier expansions are utilized in wall-parallel
planes. The temporal discretization used is a third-order semi-implicit Runge-Kutta
scheme. Further details of the DNS can be found in del Álamo et al. (2004). The simula-
tion of interest in the present study has an Reτ = 934, which is referred to as L950. This
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DNS dataset is used to assess the scale energy budget numerically. It must be observed
that the numerical data are obtained in a channel flow, while the experimental data are
obtained in a zero pressure gradient flow over a flat plate, which are fundamentally dif-
ferent flows in spite of the similar Reτ . However, it is expected that for y/δ ≤ 0.6, the
effect of the opposing wall in the channel flow should be minimal (Pope, 2000).

2.1 Choice of spacing between laser sheets

Results of an uncertainty analysis for the dual plane PIV data in Ganapathisubramani
et al. (2005) indicated that the uncertainty in sheet separation resulted in relatively
large uncertainties for ∂U/∂y and ∂W/∂y. The error of approximation in the first order
forward difference scheme used to determine these gradients also plays a significant role in
this uncertainty. A small ∆y implies a smaller error of approximation in the differencing
scheme, which is particularly important near the wall where the mean velocity gradients
are high. However, a very small ∆y results in a high uncertainty due to the uncertainty
in sheet separation. A preliminary analysis is presented below to provide an insight into
the factors to be considered in choosing an optimal sheet separation. Since ∂U/∂y is the
term which can be easily estimated using the mean profile of the boundary layer, this
term will be used to discuss errors due to the sheet spacing.

The Taylor series approximation of the velocity at point 2 in terms of values at point 1
located at a distance of ∆y is
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we obtain the first order finite difference approximation for ∂U/∂y, where the sum of
the terms enclosed in the square brackets is the truncation error associated with the first
order finite difference approximation, with the first term being the dominant quantity.
Suppose we would like to estimate the appropriate sheet separation at y+ = 110. Since
this point lies within the logarithmic region of the boundary layer (y+ > 30, y/δ < 0.3)
The value of the second derivative of the velocity can be obtained by assuming a log
profile for the velocity since this point lies within the log layer. The mean logarithmic
profile is given by
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where κ = 0.42 is the Karman constant. Then the second derivative and corresponding
error term can be written as
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which clearly shows that smaller ∆y results in smaller truncation error.

Using an uncertainty analysis similar to Ganapathisubramani et al. (2005), which is
based on the error propagation technique of Kline & McClintock (1953), an estimate of
the random error in the gradient arising from the uncertainties in the velocity and the
sheet separation can be made. It can be shown that the random error in the gradient is
given by

δ
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where δU1 & δU2 are the uncertainties in calculation of U in the two planes and δ∆y is
the uncertainty in determination of the sheet separation. The above expression tells us
that larger the ∆y, smaller the random error.

Values documented in Ganapathisubramani (2004) are Uτ = 0.25 m/s, y = 6.6 mm,
δU1 = δU2 = 0.01517 m/s, δ∆y = 0.1 mm and ∂U/∂y = 87.82 s−1, which can be used to
estimate the truncation error from equation 2 and random error from equation 3. The
final choice for ∆y is a trade-off between these two conflicting requirements. It must
be noted that while the truncation error is a definite error, the uncertainty is a possible
estimate for the error, due to which the truncation error is a more stringent constraint. In
other words, the truncation error generates a bias, while the random error generates an
uncertainty band around the biased values. Table 2 shows the errors for different choices
of y and ∆y. The first row in Table 2 was used in LRPIV1 at y+ = 110, while row 2
examines the possibility of reducing the sheet spacing to 0.5mm. From these two values,
the choice of ∆y = 1.3mm gives a small truncation error, while keeping the random
error within reasonable limits. It is clear that a decrease in sheet spacing reduces the
truncation error, while the random error goes up. Row 3 shows the parameters used
in the HRPIV experiments, where the choice of ∆y = 0.5mm is necessitated by the
small in-plane resolution. This results in a low truncation error, but a high random
error. At y = 3.0mm (y+ = 50), the value of ∂U/∂y is much higher due to which the
errors are higher in comparison to y = 6.6mm. A choice of ∆y = 1.3mm results in a
very high truncation error, whereas a choice of ∆y = 0.5mm yields a very high random
error. Hence, these errors must be kept in mind before taking a decision on the optimal
spacing. The choice of spacing will mainly depend on the quantity being derived using
the gradients. For example, terms involving differences of gradients between points in the
same plane will lead to a cancellation of the truncation error, due to which the random
error becomes more important. On the other hand, the truncation error is a more critical
constraint in terms involving averages of gradients between points in the plane. A brief
discussion of the possible effects of these errors on the terms of the scale energy budget
will be provided in Section 4. Thus, it would be possible to come up with an estimate
for the sheet separation at a given wall normal location for any experimental setup for
reasonable accuracy in velocity gradients. One practical constraint which might restrict
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the range of values of sheet separation is that ∆y should be of the same order as ∆x and
∆z to remove any averaging bias in the wall-normal direction.

y (in mm) ∆y (in mm) ∂U/∂y (in s−1) Truncation error (in s−1) Random error (in s−1)

6.6 1.3 90.2 8.9 17.9

6.6 0.5 90.2 3.4 46.5

6.0 0.5 95.2 4.0 46.9

3.0 1.3 190.5 41.3 22.1

3.0 0.5 190.5 15.9 57.4

Table 2: Estimates of truncation and random errors for various combinations of wall-normal locations
and sheet spacing.

3 Equations for scale energy budget

The simplest form of the equation for the turbulent kinetic energy budget was given by
Kolmogorov for homogeneous, isotropic turbulence. Before this equation is described,
some definitions of various terms used in the analysis are provided. ui(xi) represents the
velocity vector at a location xi. The velocity increment δui equals ui(xi + ri)−ui(xi). In
some sense, < δu2 >=< δuiδui > measures the amount of fluctuation energy contained
at scale r =

√
riri and hence is known as the scale energy. By a change in variables, the

scale energy can be shown to be dependent on the scale ri and the midpoint of the line
joining the two points Xci = 1

2
(xi + xi + ri). The Kolmogorov equation is given as
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∂u2
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. (4)

Hill (2002) provided a generalized form of the above equation for inhomogeneous con-
ditions, and for a simple shear with a mean velocity U(y) in the x-direction, it reduces
to
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, (5)

where Yc is the wall-normal location of interest, ε is the one-point pseudo-dissipation
given by ε = ν < ∂ui/∂xj∂ui/∂xj > and * denotes a mid-point average i.e. ε∗ =
1
2
(ε(xi) + ε(xi + ri)). In the above equation, terms with derivatives in ri represent con-

tributions in scale space, while terms with derivatives in Yc are in physical space. The
term containing the mean velocity gradient is the production term, while the term with
ε is the dissipation term.

In the current analysis, it is useful to study the r-averaged form of equation 5 by inte-
grating on two-dimensional square domains of side r in wall-parallel planes as shown in
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equation 3, since this enables us to study the role of energy flow across scales at a given
wall-normal location.

Qr(r, Yc) =
1

r2

∫ r

0

∫ r

0

q(rx, 0, rz|Yc)drxdrz, (6)

where Q and q represent a generic quantity.

Averaging in wall-parallel planes eliminates the second term on the left hand side, as
δU = 0 when ry = 0. The r-averaged equation can now be written in a simple form as

Tr + Π + Tc = E + Dr + P + Dc, (7)

where each term represents the corresponding term in equation 5 and is a function of
(r, Yc). Specifically, Tr gives the inertial contribution to the scale-energy flux in r-space,
Π is the production term, Tc is the inertial contribution to the spatial flux of scale-energy
and is strictly associated with inhomogeneity, E is the dissipation term, Dr and Dc are
the diffusive components of the flux in r-space and in geometric space, respectively, and,
finally, P is an inhomogeneous contribution related to the pressure-velocity correlation.

We observe that the amount of scale energy which is effectively available at a given geo-
metric location Yc is provided by the local production Π plus all the terms corresponding
to a spatial transfer of scale-energy towards (or from) the location considered. By con-
sidering the overall turbulent transport in the wall-normal direction, we can define an
effective production Πe = Π+Tc−P . Analogously, the contributions of diffusive nature
can be added to form a modified dissipation rate, Ee = E + Dr + Dc , as the sum of
the actual dissipation and the diffusive fluxes of scale-energy in physical and r-space,
respectively. With these definitions, equation 7 is expressed in a more concise form as

Tr(r, Yc) + Πe(r, Yc) = Ee(r, Yc). (8)

This expression implies that the transfer across scales plus the effective production must
equal the effective dissipation. This relation will hold through the various regions of the
boundary layer; however the relative importance of each term varies with the location.

This tool, applied to a low Reynolds number channel flow by Marati et al. (2004), has
recently shown that the classical decomposition of the channel into different regions
maintains a well defined meaning in the context of a scale by scale analysis also. In
the buffer region, production of scale-energy is predominant and feeds the spatial flux
towards adjacent zones. The log-layer is an equilibrium layer where local production
and dissipation balance, meaning that it is traversed by an almost constant flux of scale
energy, which does not interfere with the local dynamics. The spatial flux of scale-energy
is instead crucial for the sustainment of the turbulence in the bulk region. In the space
of scales, typically in the log-layer, the energy balance at smaller scales is driven by the
transfer of energy, while the production becomes the dominant mechanism to balance
the dissipation at larger scales. This analysis used earlier by Marati et al. (2004) is
applied to the experimental and numerical datasets at higher Reynolds numbers. It
must be observed that the dual plane PIV data do not allow us to evaluate the pressure
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contribution P in Equation 7. However, according to the turbulent kinetic energy budget
for a turbulent boundary layer (Pope, 2000), this contribution is expected to be negligible
for y/δ ≤ 0.6.

4 Results and Discussion

The results of the scale-by-scale analysis are presented in Figure 2. The results for the
DNS data shown in figure 2(a) show a very good agreement with equation 8. For all
scales, the dashed line for Ee and the symbols for (Πe + Tr) overlap over the full range
examined. One quantity of interest shown in figure 2(a) is the cross-over scale l+c , defined
as the scale at which the transfer and the effective production terms become equal.
Below the cross-over scale, the transfer term is the dominant term, whereas at scales
larger than the cross-over scale, the production is the dominant mechanism to balance
the dissipation term. This difference in the dominant mechanism could prove invaluable
for numerical modeling and assumptions therein. Figures 2(b)-2(e) represent the energy
budget derived from the LRPIV experiments at various locations in the boundary layer.
The first observation from these plots is that as we move away from the wall, the absolute
magnitudes of the various terms decrease. For example, in figure 2(b) at y+ = 110, the
maximum value of production goes to about 0.1, whereas even at y+ = 328 in figure 2(c),
the maximum value of production goes only to about 0.01. At y+ = 820 (y/δ = 0.7) in
figure 2(e), the maximum value of production is about 0.0025, and is less than the transfer
term at all scales. These trends seem to suggest that most of the production of energy
occurs in the region closer to the wall, which is in accordance with what is expected in a
boundary layer. The second observation, which concurs with the earlier numerical study
by Marati et al. (2004), is that the cross-over scale increases with increasing distance
from the wall, and at y+ = 820, the production is always lower than the transfer term,
implying the lack of a cross-over scale.

A third observation from these plots is the mismatch between the dissipation and the
sum of the production and transfer terms in the LRPIV experiments (Figures 2(b)-2(e)).
A previous study on low resolution dual plane PIV data and DNS data by Saikrishnan
et al. (2006) documented that larger interrogation window sizes lead to larger attenuation
of rms values, indicating the necessity for zoomed-in measurements to capture the small
scale effects occurring in the boundary layer. This suggests that the terms of the energy
balance are not resolved accurately at the smallest scales in the flow. Since all the curves
shown are integrated in the space of scales, the contribution of the smallest scales will
be present in all larger scales. Hence, it is extremely important to be able to resolve
the smallest scales in the flow, and account for their contributions. The mismatch could
also be caused by the uncertainty in measurement of gradients using dual plane PIV.
A detailed uncertainty analysis of dual plane PIV conducted by Ganapathisubramani
et al. (2005) showed that the wall-normal gradients have an uncertainty close to 40% of
the rms value of that quantity. It is possible that this uncertainty affects the quantities
which are strongly dependent on the velocity gradients, such as the dissipation and the
transfer across scales. The production, which is the major contributor to the effective
production term, is not expected to be affected substantially by this uncertainty since it
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Figure 2: Detailed energy balance for (a) DNS (y+ = 110) (b) LRPIV1 (y+ = 110) (c) LRPIV3 (y+ = 328) (d)
LRPIV2 (y+ = 575) (e) LRPIV4 (y+ = 820) (f) HRPIV (y+ = 100). The solid line is −Πe, the dash-dotted line
is −Tr, the dashed line is Ee and the symbols represent the sum (Πe + Tr). All terms are normalized with wall
variables ν and Uτ .
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Figure 3: Plot of cross-over scale versus wall-normal location for experimental and numerical datasets
(Reτ is shown in parentheses.)

does not contain any gradients of fluctuating quantities.

The HRPIV experiments were conducted in similar conditions, but with a zoomed-in
field of view, which enabled the resolution of scales down to 10.0 wall units, as shown
in Table 1. The results of the HRPIV experiments shown in figure 2(f), indicate a
much better balance between the dissipation and the sum of the production and transfer
terms, especially at the larger scales of the flow. The mismatch towards the smaller scales
could again be an effect of lack of sufficient resolution, but overall the results suggest
that the high resolution experiments provide the velocity gradient quantities to much
greater accuracy. With reference to the error analysis conducted in Section 2.1, from
the expression for the truncation error in equation 2, it can be seen that this error is
always positive. This implies that the actual value of the gradient is always larger than
the approximated value. This suggests that the curve for production might be shifted to
higher values. However, the transfer term would also be shifted to larger values, implying
that there might not be a significant change in the cross-over scale.

The estimates of the cross-over scale obtained using the datasets at y+ = 110 and y+ =
100 are plotted against the values obtained by Marati et al. (2004) for a low Reynolds
number flow in figure 3. The small circles are the data obtained in the previous study
where it was observed that these data points followed a linear trend indicated by the
dashed line corresponding to l+c = ky+. This linear relation was obtained from classical
equilibrium theory in Marati et al. (2004). LRPIV1 gave a cross-over scale of l+c = 58 and
when the cross-over scale from the DNS l+c = 74 and from HRPIV l+c = 66 are plotted on
this graph, they are seen to be higher than the earlier estimate as well, indicating a clear
increase in this scale with Reynolds number. However, there may be be a linear trend
shown by the dash-dotted line which the HRPIV and DNS datasets obey. Based on the
two more trustworthy higher Reynolds number results, it is possible that the cross-over
scale is a linear function of y+, where the slope increases with increasing Reτ . This
possibility is indicated by the dash-dotted line drawn in the plot and for an approximate
Reτ of 1000, this slope is found to be 0.67. Calculation of the cross-over scale at locations
closer to the wall and additional Reynolds numbers would help test this hypothesis.
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5 Conclusions and future work

The balance between the various terms of the turbulent kinetic energy budget was verified
for DNS and dual plane PIV data, and it was shown that high resolution PIV experiments
are required to resolve the terms accurately. The results from the DNS and high resolution
PIV data matched very well, both in terms of trends observed and balance of various
terms verified separately. The values of the cross-over scale computed from the DNS and
PIV data at higher Reynolds numbers are larger than the values predicted at a lower
Reynolds number, which suggests a dependence of this value on the Reynolds number
of the flow. Further experiments at different wall normal locations and higher Reynolds
numbers will enable a better understanding of these trends.

The error and uncertainty analysis provided a simple method of analyzing the challenges
in choosing the sheet separation for dual plane PIV experiments. The truncation and
random errors are seen to be the most significant sources of uncertainty, and the tradeoff
between these two conflicting errors is made depending on the appropriate quantity being
calculated. The present analysis provides a starting point for a more detailed analysis of
this nature to compute the parameters of the experiment.
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