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Introduction

Turbulence in wall-bounded flows can be characterized by variations in physi-
cal space or in scale space. In physical space, the near wall region can be clas-
sified into a viscous sub-layer, the buffer region, the logarithmic region and the
outer region. In the space of scales, turbulent energy is produced at the large
scales and transferred to smaller scales, finally dissipating in the form of heat
in a mechanism commonly known as the Richardson cascade. These are seem-
ingly parallel approaches to describing turbulence, and in order to describe
the scale-dependent dynamics in the presence of spatial inhomogeneities, a
more general approach combining these two ideas is required.

For homogeneous shear flow, the generalized Kàrmàn-Howarth equation
can be used in anisotropic conditions. By extending this equation to inhomo-
geneous flows, the relation between spatial fluxes and the energy cascade can
be studied in detail. This modified equation is averaged in the space of scales
on two-dimensional square domains in wall-parallel planes to yield

Tr(r, Yc) + Πe(r, Yc) = Ee(r, Yc) (1)

where r represents the scale and Yc represents the wall-normal coordinate.
In other words, this expression implies that the transfer across scales plus
the effective production must equal the effective dissipation at every scale
and wall-normal location. Each of the terms shown in the above equation is
a combination of individual terms in the derived equation. The derivation
of this equation is described in detail in [1]. This relation will hold through
the various regions of the boundary layer; however the relative importance of
each term varies with the location. While the production and transfer terms
are most important in the buffer layer, in the outer region, the dissipation
and transfer are the most important terms. The log layer is nominally an
equilibrium layer, where local production and local dissipation match each
other and thus ensures a constant flux of energy across scales.
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Results from DNS and PIV Data

Previously, data from a Direct Numerical Simulation (DNS) of a channel flow
at a friction Reynolds number Reτ = 180 were analyzed at representative
locations within the boundary layer to evaluate the terms of Eqn. 1 [1]. The
present work extends the earlier study to larger Reynolds number flows. Data
were examined from a DNS of a channel flow at Reτ = 934, which had a com-
putational domain of size 8π× 3π in the streamwise and spanwise directions,
with a resolution of 11.46× 5.73 viscous wall units respectively [2]. A second
dataset was obtained experimentally in a zero pressure gradient boundary
layer flow at Reτ = 1160 using dual plane Particle Image Velocimetry (PIV)
[3]. The dual plane setup allows for the determination of the full velocity
gradient tensor in a plane. The data were acquired in streamwise-spanwise
planes in the logarithmic region (Y +

c = 110) with fields of size 1.1δ×1.1δ and
velocities were resolved to 25 viscous wall units.

From Fig. 1(a), it is observed that at small scales, there is very little pro-
duction and the transfer is the dominant term, thus reducing the scale dynam-
ics to the classical Richardson cascade. As the scale increases, the production
term increases, which is consistent with the idea of production of energy at
the larger scales. Simultaneously, the transfer term reaches a maximum at
the transfer scale l+t = 50, and then starts to reduce. At the crossover scale
l+c = 80, the transfer and production terms are equal, and at scales larger
than this, the production becomes more dominant as compared to the trans-
fer. Although similar trends of production and transfer are observed with the
PIV data (Fig. 1(b)), the value of l+c = 60 is lower compared to the DNS
value. Further, the rate of reduction of transfer with increasing scale is much
less, which would have implications in the energy balance. This is clearly seen
in the inset, where a mismatch between the terms of Eqn. 1 is seen for the
PIV data, while a very good balance is seen for the DNS data.

This mismatch is likely due to errors in calculating the dissipation term,
which is a result of the limited spatial resolution of the experiments. The
resolution is constrained by the size of the interrogation window in the PIV
processing. A study by [4] showed the effect of averaging and reduced spatial
resolution in the computation of velocity and velocity gradients using PIV
in a turbulent boundary layer. With this knowledge, additional PIV experi-
ments were conducted at Reτ = 1100 and Y +

c = 100 with a smaller field of
view and finer spatial resolution. These high resolution data were acquired in
streamwise-spanwise planes in fields of size 0.45δ × 0.45δ, and velocities were
resolved to 10 viscous wall units.

As can be seen from Fig. 1(c), the better resolution provides a more accu-
rate value of the dissipation term at this wall-normal location, and thus the
balance between the terms of Eqn. 1 is much better. It must be noted that
the production term does not change substantially compared with Fig. 1(b)
since it does not involve local gradients of fluctuating quantities. On the other



Use of dual plane PIV to assess scale-by-scale energy budgets 3

hand, the transfer term is computed more accurately and hence the value of
l+c = 80 matches well with the value predicted by the DNS.

Conclusions and Future work

The balance between the various terms of the turbulent kinetic energy budget
was verified for DNS and PIV data and it was shown that high resolution
PIV experiments are required to accurately resolve the terms. The results
from the DNS and high resolution PIV data matched each other very well,
both in terms of trends observed and values of scales computed. [1] argued
on the basis of the classical equilibrium theory that lc ' κYc, where κ is
the Kármán constant. However, the value of lc computed from the DNS and
PIV data at a higher Reynolds number are larger than these predicted values.
This suggests a dependence of this value on the Reynolds number of the flow.
Further experiments at different wall normal locations and higher Reynolds
numbers will enable a better understanding of these trends.

(a)

(b) (c)

Fig. 1. Detailed balance (1) in the log-layer Y +
c = 110 for (a) DNS (b) PIV (c)

High resolution PIV. The solid line is −Πe and the dash-dotted line is −Tr. (Inset)
The sum (Tr + Πe) is represented by filled symbols and Ee is given by the dashed
line. All terms are normalized by (u∗)4/ν.
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