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Abstract 

A closure scheme is proposed for computing the 
evolution of turbulent boundary layers developing 
in arbitrary pressure gradients. Firstly the im- 
portant parameters pertaining to the flow in the 
general non-equilibrium case are identified. Then 
the equations that govern the streamwise evolu- 
tion of a turbulent boundary layer are formulated 
in terms of these parameters. This is done by using 
classical similarity laws such as Prandtl’s law of 
the wail and Coles’ law of the wake in conjunction 
with the mean continuity and integral momentum 
equations. Finally a closure scheme based on em- 
pirical data in conjunction with the assumption 
that the Reynolds shear stress profiles can be de- 
scribed by a two parameter family is used to pre- 
dieted the evolution for several flow cases and the 
results compared to experiments. 

1 Introduction 

Perry, Marusic, and Li’ developed a framework 
for computing the evolution of a turbulent bound- 
ary layer. An important feature of their closure 
scheme was the expression for the total shear stress 
profile which they found to be given by 

; =fl[rl,~,Sl+~1[rl,~,Sl~f92[rl,~,sl~ 

(1) 

where q = r/be, L is the distance normal to the 
wail, 6, is the boundary layer thickness, S = r/r/U7 
where Ur is the local freestream velocity and iJ, 
is the friction velocity, If is Coies2 wake factor, 
/3 = (6’/ss)(dp/dz) is the Ciauser pressure gradi- 
ent parameter where 6’ is the displacement thick- 
ness, p is the freestream static pressure, se is the 
wall shear stress, z is streamwise distance and 
C = S&dH/dz. Equation (1) is derived from the 
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mean momentum differential and continuity equa- 
tions and assuming the mean velocity profile could 
be described by Coles2 law of the wail, law of the 
wake. The functions fi, g1 and g2 are known an- 
alytical functions, which can be derived with the 
aid of Malhematica or Maple. Hence from (1) the 
parameters required to describe the state of the 
layer are found to be; 

H, S, /3 and C . 

One important property of fr, gr and gr is 
that they become independent of S as S -+ 00. 
Perry et al.’ made use of this information along 
with empirical data to formulate a closure equa- 
tion. However this closure equation was only ap- 
plicable to flows which were either in approximate 
equilibrium or quasi-equilibrium. In approximate 
equilibrium flows, H is assumed to be constant and 
the shear stress profiles are characterised only by 
H (approximately) and in quasi-equilibrium flows, 
II is allowed to vary with z provided the param- 
eter C has a negligible effect on the shear stress 
profiles, ie 

In these restricted flow cases the closure problem 
reduces to considering the relation 

C[KP,sl= 0. (3) 

Hence from data, if we know p at a given S for 
a fixed H (i.e. for one experimental data point), 
then for this fixed II we can find /3 versus S for 
ail S using equation (1) to ensure that ~/TO pro 
files are matched (approximately) for ail S. Now, 
it is found that for S sufficiently large, p = p,, 
(the asymptotic value of p) and C is no longer 
a function of S. If this procedure is repeated 
for different values of II, a one-to-one reiation- 
ship between p. and H can be found which is 
based on experiment. This formulation is consis- 
tent with a universal relation for eddy viscosity 
c, i.e. c/(&uf) = 4[n, H]. Unfortunately, such 
formulations are known to break down in non- 
equilibrium flows, i.e. flows with significant (’ con- 
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Figure 1: Comparison of nonequilibrium data of 
Marusic and Perry’ where II = 2.46 and 3.23 
(10APG) with interpolated data for the same val- 
ues of II for the equilibrium flow of East et a1.5 

tribution. Figure 1, which is taken from Maru- 
sic and Perry3, shows clearly how flows with the 
same II value can have very different shear stress 
distributions. Furthermore the recent experimen- 
tal results of Jones4 suggest that even for quasi- 
equilibrium flows, neglecting C may not be a valid 
assumptions, that is while ( may not play an im- 
portant part in the momentum balance, it has a 
significant influence on the closure formulation. 

In the recent paper Perry, Marusic, and Jones’ 
the work of Perry et al.’ was extended to include 
the effect of the parameter <, this allowed the 
evolution of general non-equilibrium flows to be 
computed. In this paper we summarise the back- 
ground theory of this new method and show how 
it can be used to compute flows ranging from non- 
equilibrium flows to those approaching equilibrium 

2 New formulation 

The restricted formulation of Perry et al. i will now 
be extended with the effect of the parameter C 
included so that the general non-equilibrium flow 
problem can be solved. Therefore, the function (3) 
needs to be replaced by 

m-h s, P, Cl = 0 (4) 
and so we have to work in a higher dimensional 
space than did Perry et al.‘. It is assumed no fur- 
ther parameters are involved in (4) and F is uni- 
versal. Hence in order to describe the state of the 
layer, we require three of the four variables in the 
above expression. The mapping out of equation 
(4) from experimental data would be extremely 
difficult because of the sparseness of the data. In 

what follows, a mathematical framework for in- 
terpolation and extrapolation with sparse data is 
developed. 

From figure 1 it is obvious that the shear stress 
distribution needs at least two parameters to de- 
scribe it and we will assume that 

(5) 

For quasi-equilibrium flows Perry et al. t relied on 
a one-parameter family to describe the shear stress, 
Lzre;(rs = f[q, II] where f is assumed to be uni- 

With the assumption implied in (5) and used 
in conjunction with (l), some information can be 
obtained regarding (4) as follows. Consider the 
S - p plane at a fixed II. If such a plane contains 
an experimental datum point D, then S, II, /I and 
C are known for that datum point and so also is 
r/r0 versus 7 from (1). Trace out a curve for in- 
creasing S of fixed shear stress profile shape on the 
S - 0 plane. By taking S + 00 we obtain asymp- 
totic values of &, and /3,, as shown in figure 2. (Go- 
ing to S = 00 is simply a convenient curve-fitting 
procedure and could never be approached exper- 
imentally). This process of keeping profile shape 
fixed will be referred to as “profile matching” and 
the details of the method used here are given in 
the following section. If this process is repeated 
often enough for different II’s then we obtain a 
II - @ ,, diagram with distributions of extrapolated 
data points corresponding to different values of C.. 
By a surface fit to C. on the the II -pa plane, con- 
tours of C. can be mapped out and we thus have 
a known universal function rl, 

vw,L~al= 0. (6) 
By shear stress profile matching we can then map 
out isosurfaces of C in II - p - S space and thus 
(4) is known. 

2.1 Profile matching 

The shear stress profile matching technique used 
here involves using a least squares error criterion. 
We find 

where r/rc is the shear stress distribution at any 
point on the p - S plane for fixed II and (s/a)~ 
is the shear stress distribution at a known datum 
point, e.g. point D on figure 2. For a well defined 
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I I Rare datum point from experiment 
I /?, S, C & II known here 

1,s 

Figure 2: Solid line indicates the trajectory of least 
squares error in shear-stress profile matching with 
known profile at D. II is fixed. 

matching trajectory the solid line in figure 2 would 
correspond to a deep valley on a contour plot of 
least square error. Taking (7) to S + 00 means 
that we use a/c?/& and a/8(, as the derivatives 
and this gives 

&P-b sl + &Lb SIC + C2[W5lP (8) 
=D2[W + ~2[ml 

where Al, A2 etc are all known analytical func- 
tions. Their functional form will depend on the 
type of wall-wake formulation which is chosen. Sev- 
eral forms have been proposed and in the Perry 
et al.’ study the formulation due to Lewkowicz’ 
was used. Here we will use the recently proposed 
formulation of Jones4 

Law of the wall 
. 

Law of the wake 

Pure wall flow 

where n = 0.41 is the Karman constant and A is 
the universal smooth wall constant taken here to 
be 5.0. This formulation was found to work par- 
ticularly well in describing the “pure-wall” com- 
ponent of the flow as found in sink flows. 

2.2 Evolution equations 

The equations which govern the streamwise eve 
lution of a turbulent boundary layer can be found 
after considerable algebra by using the momen- 
tum integral equation, the law of wall and law of 
the wake together the definitions for p and <. A 
coupled set of ODE’s result; these are 

dS XW,KC,Pl 
- = SE[II] exp[nS] d& (10) 

and 

dl-I’ CX 
- = S2E[H] exp[nS] ’ d& 

(11) 

where 

% 
ZUO fJ1 =v and x=- u. = x[R=, Kl . 

K is often referred to as an acceleration parameter 
and is defined as 

K=L. 
LUO (12) 

In all of the above 170 is the value of the freestream 
velocity at some initial point R, = 0 or z = 0, CJ1 
is the freestream velocity at some general value of 
z or R, and L is a characteristic length scale of 
the U1 distribution. Equation (10) comes from the 
momentum integral equation and the law of wall 
and law of the wake and equation (11) come from 
the definition of C and the law of the wall and law 
of the wake. The functions appearing in (10) and 
(11) are defined in the Appendix. 

Two auxiliary equations are needed to solve for 
the integration and these are equation (4), i.e. 

w, s, P, Cl = 0 
and 

S’E[II]exp[sS]-$-$ = -& 
I 

(13) 

which comes from from the law of the wall, law of 
the wake and the definition of p. All of the above 
equations can be reduced to two coupled ODE‘s 
of the form 

dS - = 4,[Ks,Rz,Kl 
d& 

(14) 

dII - = &[II,S, LK]. 
d& 

(15) 

2.3 Closure equation 

In order to evaluate the evolution of the boundary 
layer a general expression is needed for (6), i.e.. 

Although the attached eddy model can assist us 
for quasi-equilibrium flow, at the present time we 
still require a model for finite C. values. The an- 
swer can be found empirically provided enough 
experimental information is available. A survey 
of existing experimental studies showed surpris- 
ingly how little reliable data is presently available. 
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Figure 3: Available experimental data used to aid 
formulation of (6). Some typical values of G are 
shown for various data points. Data source : 0 - 
Marusic and Perry3 SOAPG, 0 - Bradshaw and 
Ferrisss, 0 - M arusic and Perry3 lOAPG, 3: - 
Samuel and Joubert ‘. 

Moreover, in many cases the data in the literature 
failed the two-dimensional conservation of mean 
momentum test using (1). A collection of available 

1 results, believed to be reliable, covering a represen- 
tative range of II -p. - (. space is shown in figure 

- 3. This plot represents the present state of experi- 
mental knowledge of closure of turbulent boundary 

1 layers and it can be seen to be very sparse. All of 
this data had Beynolds shear stress data available 

~ 
which agreed reasonably well with equation (1). 
Using this data, a first tentative form for (6) has 
been estimated to be 

i 

C;(l.lo/n2) if<. 2 0 
AA = 

Here 

(,(0.62 + 0.25II) if C. < 0 (16) 

AA = Pa - Pae (17) 

where Poe is the value of p. for C,, = 0, ie. equilib- 
rium flows and it is given by 

P 06 = -l/2 + QI14’3 (18) 

where Q is a universal constant. The form of 
(18) was derived using the attached eddy model 
of Perry and Marusic” and hence the constants 
-l/2 and 413 come entirely from theory. Figure 4 
shows experimental data (from approximate equi- 
librium flows) compared to (18) and it is seen that 
Q = 1.21 represents a good fit. Therefore 

/Joe = -l/2 + 1.21114’3 (19) 

which is very close to the relationship proposed by 
White”. 

I 

0 Sk&e and Krogstad12 

, I1 1, I, 
0 1 2 3 4 5 %I 7 

Figure 4: Experimental data which is in approxi- 
mate equilibrium compared to (18). Note the ex- 
perimental values of Poe are determined using the 
shear stress matching technique given by (8). 

The resulting functional form for (6), using 
(16), (17) and (19) can be summarised by plot- 
ting contours of Co on the PO - Il plane and this 
is shown in figure 5. 

Given the evident sparseness of the experimen- 
tal data, equation (16) can only be regarded as 
tentative. However, it is useful as shown in fig- 
ure 5 as a means to illustrate and summarise the 
approach being proposed here. One interesting 
feature worth noting is the discontinuity of the C. 
surface slope on the A/& - II plane at A/3,, = 0. 
This might reflect the possibility that the develop- 
ment and relaxation processes are quite different 
physically. 

Pa 

12 

7 

2 

-3 

-8 
I , 1 

0 1 2 311 4 

Figure 5: p,, versus Coles wake factor for different 
C. using (16), (17) and (19). 

3 Application to experiments 

Equations (14) and (15) are applicable to com- 
pletely general non-equilibrium turbulent bound- 
ary layer evolution and using (16) we are now in 
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a position to compute the boundary layer evolu- 
tion. In the following two cases will be considered 
namely; non-autonomous and autonomous. 

3.1 Non-autonomous cases 

Here the independent variable R, appears explic- 
itly on the RHS of equations (14) and (15) mak- 
ing them non-autonomous. Given an initial mean 
velocity profile and using (16) the evolution has 
been calculated and the results are shown in fig- 
ure 6. The flows shown in figure 6 are all non- 
equilibrium flows and cover a broad distribution 
of adverse pressure gradient conditions. The flow 
of Bradshaw and Ferriss’ is a relaxing flow, the 
two Marusic and Perry3 cases are developing flows 
as is the Samuel and Joubertg case. Good agree- 
ment can be seen with experiment. This should 
be so since the data tested was used to formulate 
(16) in the first place. These calculations at least 
show that the scheme proposed is viable and the 
mathematical machinery is working correctly. 

3.2 Autonomous cases 

For flow c-s such as zero pressure gradient, source 
flow or sink flow, ( 1/x2)(dx/dRz) in (13) becomes 
K, where for source flows 

-2nv --v K=-=- 
Q UOL ’ 

for sink flows 

K+& 
0 

and for zero pressure gradient flows K = 0. Here 
Q is the strength of the source or sink and L is 
a constant (see figures 7 and 10). For these cases 
(14) and (15) become autonomous by an appropri- 
ate change in the independent variable R, to T, 
to give 

* = +1p-I, s, K] 
dZ (20) 

= = q!~~[l-I, S, K]. 
dTz 

(21) 

where T, = -(ln(l - R,K))/K. Also in the limit 
as K + 0 (ie. zero pressure gradient flow) T, = 
R,. This means that solution trajectories can be 
displayed on the S - II phase plane for various 
initial conditions, eg. So, HO at R, = 0 for fixed 
K. 

3.2.1 Source flow 

Figure 7 shows a schematic representation of source 
flow and calculations for a series of different ini- 
tial conditions. As mentioned earlier, this is an 
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Figure 6: Nonequilibrium adverse pressure gra- 
dient data of 0 Bradshaw and Ferrisss, relaxing 
flow, Marusic and Perry3, o 30APG and Cl 1OAPG 
flow, and A Samuel and Joubertg, positively in- 
creasing APG flow. Solid lines are the correspond- 
ing computed solutions of (10) and (11) using (13), 
(8) and (16). Note shifts in abscissa. 

autonomous system and so the solution can be dir+ 
played on a S - H phase plane diagram. There is 
no experimental data for this case so it represents 
a genuine prediction. The range of validity of (16) 
is very limited in c,, and this may have been ex- 
ceeded in computing figure 8. The heavy broken 
line in figure 8 is from the Perry et al.’ quasi- 
equilibrium calculation using (19) for Pac. It can 
be seen that for this latter calculation we are not 
free to chose the initial conditions for II and S 
independently. 
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Figure 7: Schematic of source flow boundary layer, 
note origin for z is arbitrary. 
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s 

Figure 8: Source flow calculations for K = 
v/(LUo) = -10 -s. Heavy broken line is the quasi- 
equilibrium solution of Perry et al. ‘. 

3.2.2 Zero pressure gradient flow 

In figure 9 is shown the case of a zero pressure gra- 
dient flow calculated using closure equation (16) 
in conjunction with (8). The evolution equations 
were solved for three different initial conditions, 
including Coles’ standard trip condition. These 
solutions rapidly approach the quasi-equilibrium 
solution of Perry et al. ‘, which is also shown in 
figure 9. Colesi5 suggests II can be correlated 
with Ro, for a given initial condition and provides 
a curve fit for the so called ‘standard trip initial 
condition’. Using (9) such a relationship can also 
be expressed on the II - S phase plane and this 
is shown by the heavy line in figure 9. It can 
be seen the Coles curve fit approaches the quasi- 
equilibrium solution more gradually than the so 
lution computed using (16) and starting from the 
same standard trip initial condition. This high- 
lights the tentative nature of (16), being based on 
very sparse data and in order to get better agree- 
ment with experiments further high quality exper- 
iments are required to formulate (16). 

It is important to note that the current formu- 
lation implies that a zero pressure gradient layer 

is not an equilibrium layer but it is an autonomous 
layer which rapidly asymptotes into a quasi-equilibrium 
layer and does reach a state of precise equilibrium 
(self-similarity) only at infinite Reynolds numbers. 

0.4 

0.2 

0.0 

Coles curve fit 

i 
Coles’ standard trip initial condition 

1 I I 1 I 
20.0 25.0 30.0 35.0 s 

Figure 9: Zero pressure gradient flow showing; 
quasi-equilibrium calculation of Perry et al. ’ and 
current calculation using (16) with various initial 
conditions also shown is the Coles” curve fit. 

3.2.3 Approaching sink flow 

A recent thorough study of sink flows was carried 
out by Jones4 and these are also considered here. 
Such flows are a good example of favourable pres- 
sure gradient flows. A sink flow turbulent bound- 
ary layer is one whose pressure gradient follows 
that of a twodimensional potential sink. The flow 
is shown schematically in figure 10. Townsend” 
and Rotta” identified sink flow as the only smooth 
wall boundary layer that may evolve to a state of 
precise equilibrium at finite S for flows which are 
two-dimensional in the mean. A precise equilib- 
rium layer is one where all mean and turbulence 
measurements are invariant with the streamwise 
direction, when they are scaled with the correct 
velocity and length scale. 

Figure 10: Schematic of sink flow boundary layer, 
note origin for z is arbitrary. 
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In this experimental study, three acceleration 
parameters (K) were investigated with a total of 
62 mean-flow stations. Figure 11 shows the corre- 
sponding ,& versus II data. Expression (16) is not 
expected to apply in this range of II. 

The heavy solid line shown in figure 11 corre- 
sponds to a curve fit for the <. = 0 data points 
with the functional form 

pa0 = -0.5 + 1.38I-I + 0.13l-I’. (22) 

Equations (22) and (19) are very close for II greater 
than about 2. The lines of constant (a shown in 
figure 11 come from a local&d surface fit: 

C,, = (0.85 - 6.9II + 8112)Ap, (23) 

0.0 0.1 0.2 0.3 0.4 OS 
l-l 

Figure 11: Data of Jones4. Each point has a differ- 
ent value of C,,. Solid line corresponds to equation 
(22) for C. = 0. 

Using (23), (13) and the least-squares-error shear- 
stress profile matching, formulation (4) can be de- 
scribed and thus equations (10) and (11) can now 
be used to compute the evolution of the boundary 
layer given any initial station where II, S, p and C 
are known. Figure 12 show a comparison between 
the experimental data and computation and good 
agreement is observed. This shows that the clo- 
sure scheme is a viable one and indicates that the 
mathematical machinery is working correctly. 

4 Conclusions and Discussion 

A framework has been constructed for formulat- 
ing closure for a turbulent boundary layer evolv- 
ing in an arbitrary streamwise pressure gradient. 
This involves using the well known mean-flow scal- 
ing laws such as Prandtl’s law of the wail and the 
law of the wake of Coles together with the mean 
continuity and the mean momentum differential 
and integral equations. The important param- 
eters governing the flow are identified from the 

7 

shear stress formulation derived by Perry et al. l. 
The Reynolds shear stress profiles are assumed to 
form a two parameter family as opposed to a one 
parameter family implied in many eddy viscosity 
models. 

Evolution equations based on an integral ap- 
proach are consistent with the attached eddy hy- 
pothesis which utilises convolution integrals. The 
above approach seems more reasonable physically 
than most differential field methods because in re- 
ality, the transport properties at one point in the 
flow must be intimately related to motions remote 
from that point. This feature is an important as- 
pect of the attached eddy hypothesis. 

Initially closure is done here semi-empirically 
from experimental data and using the wall-wake 
attached eddy model of Perry and Marusic lo. Com- 
parisons are made with experiments covering ad- 
verse pressure gradient flows in relaxing and de- 
veloping states and flows approaching equilibrium 
sink flow and reasonably good agreement is ob- 
served. 

The proposed formulations for $#I, &,, <(I] are 
very tentative and the variation between its form 
between adverse and favourable pressure gradient 
flows gives some idea of the complexity that may 
be involved in one general formulation covering 
all flows. The aim of the present work was to de- 
scribe the appropriate framework and assess its 
viability. The viability of the scheme has been 
demonstrated here and further experimental data 
would be needed so that a single formulation cov- 
ering a broad range of parameters can be devel- 
oped. The use of models such as those based on 
the attached eddy hypothesis show potential and 
should with further development be useful in help- 
ing map out the II - p,, - co space with appropri- 
ate interpolation and extrapolation schemes. Once 
the mean flow development can be calculated the 
attached eddy model of Perry and Marusic lo could 
be used to evaluate the relevant turbulence quan- 
tities, such as Reynolds stresses and spectra. 

The authors wish to acknowledge the financial 
assistance of the Australian Research Council. 

Appendix 

R= 
S 

KS2Cl - KSCZ + cz 
P(2SCl - C2) 

+ c1(Ks2c1 - KsC2 + CZ) : 

+ <(dCz/dII - SdCl/dll - N(Cz - SC,)) 
KS’Cl - KSC2 + c2 

, 

where 
dWc[l, HI 

N= w,p,q+n dH , 
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and using (9) N = 2, 

PI 

PI 

PI 

PI 

151 

PI 

PI 

PI 

PI 

GPI = J “U1-u 
0 

rr,d”’ 
G[rq = J “(WJ 2 

0 
T) h 

z 

A+ fH’c[l,Hl)] , 
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Figure 12: Evolution of mean flow parameters for 
flow of Jones (1998). Symbols represent data; solid 
lines correspond to calculation. Note in these fig- 
ures z is measured from the trip wire. 
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