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ABSTRACT

A non-linear influence of the large-scale log-region mo-

tions onto the small-scale near-wall cycle is found to exist

in the buffer and log-region of turbulent boundary layers.

Based on recent observations of Hutchins & Marusic (2007b)

in high Reynolds number turbulent boundary layers, a novel

procedure is developed to evaluate the modulation effect.

This is done using tools based on Hilbert transformations

applied to the spectrally filtered small-scale component of

fluctuating velocity signals. The procedure allows us to

quantify the modulation level of small-scale motions im-

parted by the superstructure type-events. Further analysis

shows a high degree of robustness for this method.

INTRODUCTION

In wall-bounded turbulent flows, it is believed that the

relationship between different scale motions could play an

important role in the turbulence organisation. Despite nu-

merous studies devoted to the understanding of such flows,

there are still few solid observations of the organisation of

large- and small-scale structures. The DNS (direct numeri-

cal simulation) study of Jiménez & Pinelli (1999) supported

the view that the near-wall cycle of streaks and quasi stream-

wise vortices is self-sustaining and unaffected by the outer

region, i.e. it is capable of regenerating even in the absence

of external triggers or influences (Panton, 2001). How-

ever, this autonomous view was based largely on results

from low Reynolds number studies (Reτ < 1000, where

Reτ = δUτ /ν, with δ the boundary layer thickness, Uτ

the friction velocity and ν the kinematic viscosity), which

means by definition that the range of scales of motions and

the scale separation are severely limited. More recently, ad-

vances in Particle Image Velocimetry and higher Reynolds

number facilities have given further understanding of large

scale structures, which exhibit clear Reynolds number de-

pendencies (Adrian et al., 2000; Ganapathisubramani et al.,

2003; Hutchins et al., 2005). Newer DNS studies by del

Álamo et al. (2004) and Hoyas & Jiménez (2008) have also

reinforced this view. Experimental studies of Hutchins &

Marusic (2007a) at higher Reynolds number (Reτ ∼ 7000),

have revealed the presence of elongated regions (∼ 20δ) of

momentum deficit in the log-layer, called “superstructures”

by the authors. These structures appear to be similar to

the Very Large Scale Motions (VLSMs) described by Kim

& Adrian (1999) and Adrian et al. (2000). The discovery

of such very large-scale motions has in turn raised questions

concerning their effect on the near-wall cycle. By study-

ing fluctuating velocity signals from hot-wire sensors in the

near-wall region, Hutchins & Marusic (2007b) recently ob-

served that, in addition to the low-wavenumber mean shift,

the largest scales appeared to be “amplitude modulating”

the small-scale fluctuations. For the present paper, we ex-

pand upon the initial observations of Hutchins & Marusic

(2007b) (Reτ ∼ 7000), using the Hilbert transformation in

an attempt to quantify the relationship between large-scale

fluctuations and any amplitude modulation of the small-

scale energy in turbulent boundary layers. In particular,

detailed analysis is performed on the validation and robust-

ness of this novel procedure.

EXPERIMENTS

The experiments were conducted in the High Reynolds

Number Boundary Layer Wind-Tunnel (HRNBLWT) at the

University of Melbourne with a working test section 27×2×1

m. Full details of the facility are available in Nickels et al.

(2005). Measurements consist of boundary layer traverses

using a single-normal hot-wire probe. The probe is made

using a Wollaston platinum wire sensing element, operated

in constant temperature mode using an AA Lab Systems

AN-1003 with overheat ratio set to 1.8. The diameter d and

length l of the sensing element were chosen such that the vis-

cous scaled length l+ = lUτ /ν = 22 with l/d = 200, to avoid

any spatial resolution influences (Hutchins et al., Under Re-

view). The non-dimensional time interval between samples

was kept in the range ∆T+ ≃ 0.4 − 0.6 to ensure that the

smallest scales were adequately resolved. A sufficiently long

sample length T , in the range of 5000–14000 boundary layer

turnover times (TU∞/δ where U∞ is the freestream veloc-

ity), was necessary to converge the energy contained in the

largest-scales. The friction velocity Uτ was calculated from

a Clauser chart fit (using log-law constants κ = 0.41 and

A = 5.0). Boundary layer thickness δ is calculated from a



modified Coles law of the wake fit (Jones et al., 2001). Mea-

surements were made for this study at a Reynolds number

Reτ = 7300.

AMPLITUDE MODULATION

It is now well know that as the Reynolds number in-

creases, a second distinct peak appears in the pre-multiplied

energy spectra map of the streamwise velocity compo-

nent (Hutchins & Marusic, 2007a). A representation of this

map for the present data is given in figure 1 where the coor-

dinate system, x, y, and z refers to the streamwise, spanwise

and wall-normal directions. The spectral density function of

the streamwise velocity fluctuation is described by φuu and

the streamwise wavenumber and wavelength are denoted by

kx and λx respectively (where λx = 2π/kx). Over-bars in-

dicate time-averaged values and the superscript “+” is used

to denote viscous scaling of length z+ = zUτ /ν, velocity

u+ = u/Uτ and time t+ = tU2
τ /ν.
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Figure 1: Iso-contours representation of the pre-multiplied

energy spectra of streamwise velocity fluctuation kxφuu/U2
τ

(Reτ = 7300); Levels are from 0.2 to 1.8 in steps of 0.2.;

The “ + ” symbols mark the inner (z+ = 15, λ+
x = 1000)

and outer peaks (z/δ = 0.05, λx/δ = 6); The horizontal dot-

dashed line shows the location of the spectral filter (λx = δ).

In addition to the near-wall cycle peak (inner-peak), a

clear peak appears in the logarithmic region (outer-peak)

in figure 1. This peak was related by Hutchins & Marusic

(2007a) to the superstructure type events associated with

the log-region. They also noted that this large-scale energy

imposes a strong signature at the wall, with low-wavenumber

events superimposed on the near-wall cycle, high frequency,

streamwise fluctuations. Further investigations also reveal

that the large- and small-scales interaction does not appear

to be only a linear process of superposition.

A more advanced study of the relationship between large-

and small-scales is performed by decomposing a fluctuating

velocity signal into a large- and a small-scale component

(applying wavelength pass filter below and above a careful

chosen cutoff wavelength). From the map in figure 1, λx = δ

appears to be a reasonable location to separate large- and

small-scale components. An example of such decomposition

is given in figure 2 for a sample u+ at z+ = 15. The raw

signal u+ (Fig. 2a) is decomposed in a large- u+
L

(λx > δ)

and small-scale u+
S

(λx < δ) components (Fig. 2b and 2c re-

spectively). It is observed that under the negative signature

of a superstructure (large negative fluctuation excursion of

the large-scale component u+
L

) the small-scale component

seems to be amplitude modulated, e.g. lower fluctuations

are observed. To analyse and quantify this modulation ef-
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Figure 2: Example of small-scale decomposition on fluctu-

ating u+ velocity signal in the near-wall region, z+ = 15;

(a) raw fluctuating component u+; (b) large-scale fluctua-

tion λx/δ > 1; (c) small-scale fluctuation λx/δ < 1; (d)

its envelope; and (e) filtered envelope (solid line) against

the large-scale component (dot-dashed). For comparison,

the mean of the filtered envelope has been adjusted to zero.

Dashed vertical lines show region of negative large-scale fluc-

tuation.

fect we introduce the Hilbert transformation applied to the

small-scales component u+
S

. The Hilbert transformation is

well know to extract the envelope of any signal (Papoulis,

1962; Bendat & Piersol, 1986; Hahn, 1996; Bracewell, 2000;

Mathis et al., 2007), which in amplitude modulation process-

ing corresponds to the modulating signal (assumed here to

be the large-scale component). Hence, the correlation coeffi-

cient between the envelope of the small-scale component and

the large-scale component should return a direct indicator

of the level of amplitude modulation. However, the enve-

lope returned by the Hilbert transform will track not only

the large-scale modulation due to the log-region events, but

also the small-scale variation in the “carrier” signal as can

be seen in figure 2d. To remove this effect, we filter the

envelope at the same cutoff wavelength as the large-scale

signal (λx > δ). This returns a filtered envelope EL(u+
S

)

describing the modulation. It is now possible to compute a

meaningful correlation coefficient R, of the filtered envelope

EL(u+
S

) with the large-scale velocity fluctuation u+
L

R =
u+

L
E

L
(u+

S
)

q

u+
L

2
q

E
L
(u+

S
)
2

(1)

where
p

u2 denotes the r.m.s value of the signal u. A

full description of the process to qualify the amplitude

modulation level in any fluctuating velocity signal is given

in figure 3. For the sample shown in figure 2e, the degree

of amplitude modulation R is found to be 0.33, which is a

significant correlation.

A complete evaluation of the degree of amplitude

modulation across the turbulent boundary layer is obtained

by applying the procedure for the streamwise fluctuating

velocity component u+ at all wall-normal locations z+. The

resulting modulation coefficient, R(z+), is a strong function

of z+ (as seen in figure 4). It appears that the viscous

sub-layer of elongated high- and low-speed streaks (Kline

et al., 1967) resides under a strong amplitude modulation

effect (0.2 ≤ R ≤ 0.7) caused by low wave-number motions

associated with the log-region. Away from the wall, the

modulation coefficient describes a logarithmic evolution
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Figure 3: Procedure to determine the degree of amplitude

modulation of the large-scale motions onto the small-scale

events contained in any fluctuating velocity signal.
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Figure 4: Wall-normal evolution of the degree of amplitude

modulation R(z+); Reτ = 7300.

decreasing progressively to reach a zero approximately at

the geometric mid-point of the log layer z+ ≈ 300 (on

a log plot). A reversal in correlation behaviour appears

beyond. This is in good agreement with to the observations

of Hutchins & Marusic (2007b) who found that the

small-scale energy was smaller under negative large-scale

fluctuations up to the middle of the log-region, after which

a reversal occurred (and the small-scale fluctuations were

more energetic under negative large-scale excursions). At

the top edge of the boundary layer the high negative peak

in the correlation corresponds to the intermittency effect.

It was observed from a cursory analysis of a velocity signal

in the outer wake region that small-scale fluctuations are

totally embedded in the intermittent large-scale signature.

It is noteworthy that the shape of the amplitude mod-

ulation coefficient R(z+) appears remarkably similar to the

skewness of the streamwise fluctuating velocity. Mathis et al.

(In Press) have shown that a similar Reynolds number trend

appears between the skewness (Metzger & Klewicki, 2001)

and the modulation coefficient in the buffer layer: with in-

creasing Reynolds number the minimum of S(z+) and R(z+)

increases from negative to positive values. However, it is

difficult to understand why these two profiles should look so

similar, when they refer to such different statistical quan-

tities. The skewness is a measure of the asymmetry of the

probability distribution of a signal about the mean. The

modulation coefficient returns only a measure of the degree

of amplitude modulation. As a final point, it is noted that

both quantities are related to the phase information between

large- and small-scale events.

VALIDATION AND ROBUSTNESS

The process developed above involves numerous steps of

calculation. Therefore to remove any doubt over the veracity

of the results, we study here the robustness of the process. In

the first instance, a synthetic signal is used to demonstrate

that no artificial degree of modulation can result from the

different mathematical tools. We also study the effect of

the cutoff wavelength involved in the wavelength pass filters.

This is performed by two ways. First, we compare the effect

of the convective velocity which is used to obtain length-scale

information λx from a time signal. Secondly, we analyse

the dependency between the degree of modulation and the

chosen cutoff wavelength. Several cutoff wavelengths are

tested, located between the inner- and the outer-peaks.

Synthetic signal.
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Figure 5: Comparison of the amplitude modulation proce-

dure applied to a real signal with the procedure applied to a

synthetic phase scrambled signal (z+ = 15, Reτ = 7300); (a)

instantaneous sample of a real u+ fluctuating signal; (b) in-

stantaneous sample of a synthetic ũ+ fluctuating signal; (c)

correlation coefficient R(z+) between the large-scale compo-

nent and the filtered envelope of the small-scale component.

The synthetic signal is constructed from the original ve-

locity signal. After converting the original signal into Fourier

space, the phase information (the phase of each Fourier
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Figure 6: Effect of the convection velocity, Reτ = 7300; (a) Iso-contours of the pre-multiplied energy spectra of streamwise

velocity fluctuation kxφuu/U2
τ , dark lines contours show the map using local convective velocity Uc(z+), gray lines contours

show the map using global convective velocity Uc = 0.82U∞, contours are from 0.2 to 1.8 in steps of 0.2. Horizontal dot-dashed

lines show the location of the spectral filters (λx = δ). (b) Comparison of the modulation coefficient for local (dark line) and

global (gray line) convection velocity.

coefficient) is scrambled by replacing it with a randomly

generated number between 0 and 2π. The amplitude is kept

unchanged. An inverse Fourier transformation is applied, al-

lowing us to obtain a synthetic signal with matched energy,

but scrambled phase. A sample of each signal is shown in

figures 5a and 5b for the wall-normal location z+ = 15. Both

signals look very much like turbulent fluctuating u+ velocity

signals. Further analysis of the synthetic signal reveals that

its energetic signature is identical to the energetic signature

of the original signal. However, it is found that the synthetic

signal has a zero skewness and a Gaussian distribution (kur-

tosis of 3) all across the boundary layer, whereas the original

signal has a wall-normal dependent skewness and kurtosis.

A cursory inspection of synthetic signal sample does not re-

veal any sign of amplitude modulation as appears in the

real signal (Fig. 2). This is confirmed by calculating the de-

gree of amplitude modulation of the synthetic signal across

the boundary layer. A comparison R(z+) between real and

synthetic signals is given in figure 5c. The correlation co-

efficient R(z+) for the synthetic signal exhibits a zero level

across the entire boundary layer whereas for the real signal

(which is reproduced from figure 4), R(z+) returns a strong

wall-normal dependency.

Effect of the convection velocity.

A major stage of the demodulation procedure is to de-

compose the initial signal into small- and large-scale com-

ponents using some suitably selected wavelength pass fil-

ter. The choice of this cutoff wavelength is largely based

on the pre-multiplied energy spectra map (Fig. 1). It is

noteworthy that the wavelength calculated at each wall-

normal location is obtained using a local convection velocity.

However, the determination of the true convection velocity

in turbulent boundary layers remains a controversial sub-

ject (Dennis & Nickels, 2008). Regarding it as local (where

local convection velocity is determined from the local mean

Uc(z+) = U(z+)), or global (where the convection veloc-

ity is given by some constant across the boundary layer e.g.

Uc = 0.82U∞) results in changes to the shape of the pre-

multiplied energy spectra map. Both contours are compared

in figure 6a, where dark lines represent contours using local

convective velocity (reproduced from Fig. 1), and gray lines

show contours obtained using a global convection velocity.

The buffer and log-layers are the most affected by the choice

of the convective velocity, resulting in a significant change in

the inner-peak location (moved from λ+
x = 1000 to ∼2200).

The outer-peak and the top edge of the boundary layer re-

main relatively unaffected. Consequently, with constant Uc,

both inner- and outer-peaks are moved closer together. How-

ever, the cutoff wavelength (λx = δ) remains between these

two peaks, and still seems to be a reasonable location to sep-

arate large- and small-scale motions. It is recalled that the

goal of this analysis is to study the robustness of the am-

plitude modulation procedure, and not to become embroiled

in debates surrounding appropriate choice of convection ve-

locity. A more detailed discussion on this subject can be

found in the work of Dennis & Nickels (2008). Regardless,

the amplitude modulation procedure has been applied for

each case, and results are plotted in figure 6b. The dark

line shows the original result, and the gray line represents

results obtained using the global velocity. Similar to the

pre-multiplied energy spectra map, only the buffer and log-

layers are affected, but weakly. The maximum discrepancy

between both results is less than 5%. It appears that the

demodulation procedure (Fig. 3) is somewhat robust to any

error occurring in the construction of the pre-multiplied en-

ergy spectra map (due to convection velocity).

Effect of the cutoff wavelength.

Not only the convection velocity can affect the amplitude

modulation level, but also the location of the cutoff wave-

length. A careful analysis of this point is performed here

where several cutoff wavelengths are studied, chosen between

the inner-peak (λ+
x = 1000) and the outer-peak (λx ∼ 6δ)

locations. It is noteworthy that the local convection velocity

is used here. Four cutoff wavelengths are tested, represented

by the dot-dashed lines on the pre-multiplied energy spec-

tra map in figure 7a. For each of them, the corresponding

modulation coefficient is plotted against the wall-normal po-

sition in figure 7b. The overall shape of R(z+) appears to

remain unaffected, but a discrepancy in levels is observed,

mainly in the buffer layer. Considering that the set of cutoff
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Figure 7: Effect of the cutoff wavelength; (a) Iso-contours of the pre-multiplied energy spectra of streamwise velocity fluctuation

kxφuu/U2
τ with contours from 0.2 to 1.8 in steps of 0.2; Horizontal dot-dashed lines show the locations of the cutoff wavelengths;

The large “ + ” mark the inner-peak (z+ = 15, λ+
x = 1000) and the outer-peak (z/δ = 0.06, λx/δ = 6); (b) comparison of the

modulation coefficients.

wavelengths covers one order of magnitude, the difference in

levels noted in the buffer region appears relatively weak.

In Mathis et al. (In Press), a larger number of cutoff

wavelengths were tested. The maximum correlation in the

buffer layer actually peaks for a cutoff λx/δ = 0.2, after

which, for smaller λx/δ, the magnitude of the correlation

will reduce.

All of these results demonstrate a robustness and relia-

bility for the procedure in assessing the degree of amplitude

modulation between the large-scales and the small-scale mo-

tions.

CONCLUSION

A novel procedure, using the Hilbert transformation

applied to spectrally filtered streamwise fluctuating veloc-

ity signal, has been developed to characterise the degree

of amplitude modulation taking place between large- and

small-scale motions in turbulent boundary layer. Using the

preliminary scale decomposition suggested by Hutchins &

Marusic (2007b), it is shown that the large-scale component

of any streamwise fluctuating velocity signal can be viewed

as a modulating signal whilst the small-scale component is

similar to a modulated signal. Consequently, the near-wall

cycle resides under a strong non-linear amplitude modula-

tion effect owing to the large-scale motions.

The amplitude modulation procedure developed through

this paper constitutes a valuable tool to analyse the scale in-

teractions in turbulent boundary layers. The veracity of the

results is reinforced here by an extended study of the differ-

ent parameters used in the procedure. It is shown that the

estimation of the degree of amplitude modulation is highly

robust to any error which might be introduce through the

construction of the pre-multiplied energy spectra map, the

choice of the cutoff wavelength or any artefact induced by

other mathematical tools.
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