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Abstract

The relationship between large- and small-scale motions re-
mains a poorly understood process in wall-bounded turbulence.
Such misunderstanding is perhaps, in part, due to the limited
scale separation typical of many laboratory-scale facilities. A
recent investigation performed by Hutchins and Marusic [11]
in a high Reynolds number turbulent boundary layer has qual-
itatively shown the existence of a modulating influence of the
large-scale log region motions on the small-scale near-wall cy-
cle. For this study we build upon these observations, using the
Hilbert transformation applied to the spectrally filtered small-
scale component of fluctuating velocity signals, in order to
quantitatively determine the degree of amplitude modulation
imparted by the large-scale structures onto the near-wall cycle.

Introduction

Over the past several decades, a great many studies have been
directed towards understanding the turbulence structure in the
near-wall region of wall-bounded flows. To a large extent, such
studies have their origins in the observations of Klineet al. [16]
and the realisation that recurrent near-wall structures can play
a key role in turbulence regeneration. More recently our un-
derstanding of such events has tended to shift towards a self-
sustaining near-wall cycle, in which the near-wall structures
propagate and sustain without need of external triggers. Such
autonomous views are based largely on insightful low Reynolds
number simulations by Jiménez & Pinelli [13] and Schoppa &
Hussain [21].

The logarithmic region was largely absent from the earliestlow
Reynolds number flow visualisations and DNS studies. For ex-
ample, the approximate upper and lower bounds of the loga-
rithmic region (100< z+ < 0.15δ+), would indicate that al-
most no overlap region was present in the measurements of
Kline et al. [16]. However, advances in Particle Image Ve-
locimetry (PIV) and Direct Numerical Simulations (DNS) have
afforded the opportunity to study the turbulence structurein
the logarithmic region of higher Reynolds turbulent boundary
layers (Adrianet al. [1], del Álamo et al. [2]). PIV studies
of streamwise/spanwise planes have revealed the presence of a
pronounced stripiness in instantaneous fields of streamwise ve-
locity (u) fluctuation [7, 22, 10]. Such elongated regions of mo-
mentum deficit have been explained within vortex based models
as the region between the legs of aligned packets of hairpin vor-
tices [1, 7, 22, 10, and others]. These low-speed regions are
typically 0.3− 0.5δ wide in the spanwise direction, and seem
to often occur in spanwise alternating patterns (elongatedlow-
speed events are usually flanked on either side by high speed
events). The length of these features often exceeds the stream-
wise length of the PIV images. Hutchins & Marusic [12] em-
ployed rakes of hot-wire probes to ascertain the true lengthof
these structures, demonstrating that they routinely exceed 15δ
in length and meander substantially. They used the collective
term ‘superstructures’ to describe these events. Ganapathisub-
ramani et al. [6] used a multiple side-by-side arrangement
of cameras to image 8δ×2δ streamwise/spanwise planes in a

supersonic turbulent boundary layer, finding similar elongated
meandering features. For pipe flows, the energetic footprint of
superstructure events is evident as low-wavenumber peaks in
pre-multiplied energy spectra, termed very large-scale motions
or VLSM [14, 8]. More recently Montyet al. [20] have em-
ployed hot-wire rakes in the log region of both channels and
pipes, reiterating the general presence and form of superstruc-
tures in internal geometries.

It is natural to consider what effect these very large log region
events might have on the near-wall cycle. Use of the term ‘au-
tonomous’ when referring to the near-wall cycle can tend to
negate the influence of larger scales which, although perhaps
not strictly a prerequisite for the near-wall cycle, may still im-
part an influence or modulation on near-wall events. One clear
example of such an influence is in the breakdown of univer-
sal behaviour based on viscous scaling in the near-wall region.
The viscous-scaled near-wall peak in the streamwise broadband
intensity clearly grows in magnitude with increasing Reynolds
number [15, 5, 19, 18, 17]. Moreover, it has been shown that
such growth is due to the increase of large-scale energy im-
parted onto the near-wall region asRe increases [18, 12, 11].
Hutchins & Marusic clearly show that the footprint of large-
scale superstructure events in the streamwise velocity fluctu-
ations can extend deep into the near-wall region [12]. This
is as predicted by Townsend [23], who noted that the near-
wall region will feel wall-parallel motions due to all attached
eddies with centres above that height (right across the shear
layer). Thus, in the near-wall, the streamwise velocity fluctu-
ations will be the sum of the induced fluctuations from every
scale that resides above (including superstructures). In this in-
stance the large-scale energy is merely superimposed as a low-
wavenumber shift onto the near-wall, and by definition (since
it is largely wall-parallel), will not contribute to the Reynolds
shear stress.

By studying fluctuating velocity signals from hot-wire sensors
in the near-wall region, Hutchins and Marusic [11], recently ob-
served that in addition to the low-wavenumber mean shift, the
largest scales appeared to be ‘amplitude modulating’ the small-
scale fluctuations. They noted that the large regions of stream-
wise momentum deficit (associated with the footprint of the ‘su-
perstructures’) are accompanied by reduced small-scale fluctu-
ations in the near-wall region. On the other hand, for large-scale
high-momentum regions, the small-scale fluctuating component
is more energetic. They also found that, away from the wall,
this scenario seems to reverse, with the more energetic small-
scale fluctuations eventually becoming aligned with that part of
the superstructure that is in momentum deficit. Bandyopadhyay
and Hussain [3] have also looked at the relationship between
large- and small-scales in a number of shear flows. They found
significant coupling between scales, and also noted the same
reversal in coupling occurring across the boundary layer (refer-
ring to this as a phase difference).

For the present paper, we expand upon the initial observations
of Hutchins and Marusic [11], using the Hilbert transformation



in an attempt to quantify the relationship between large-scale
fluctuations and any amplitude modulation of the small-scale
energy in turbulent boundary layers. It should be noted through-
out that when discussing ‘smaller-scales’ we are referringto a
sub-set of small-scales (in the range 100. λ+

x . 1000), and not
to the fine-scales also known as the Kolmogorov or dissipation
scales.

Experimental data set

The present analysis is performed on a single experimen-
tal data set of hot-wire measurements conducted in the high
Reynolds number boundary-layer wind-tunnel (HRNBLWT)
at the University of Melbourne. The friction Reynolds num-
berReτ = δUτ/ν = 7300 (whereδ is the boundary layer thick-
ness,Uτ is the friction velocity andν is kinematic viscos-
ity). The hot-wire sensor had a viscous scaled sensing length
l+ = lUτ/ν = 22 (where l is the sensor length). The non-
dimensional time interval between samples wasT+ ≃ 0.4 and
the total sample length was in the range of 5000-14000 bound-
ary layer turnover times. Key boundary layer parameters for
the hot-wire measurements are summarised in Tab. 1. Further
details concerning experimental setup and measurement proce-
dure are given in Hutchins and Marusic [12, 11]. Full detailsof
the wind tunnel facility are provide by Hafezet al. [9].

Uτ (m/s) δ (m) Reτ l (m) l+

0.331 0.330 7300 0.001 22

Table 1: Boundary layer characteristics of hot-wire measure-
ments.

Throughout this paper, the coordinate system,x, y andz, refer
to the streamwise, spanwise and wall-normal directions. The
respective fluctuating velocity components are denoted byu,
v and w. The spectral density function of the streamwise ve-
locity fluctuation is described byφuu. Over-bars indicate time-
averaged values and the superscript “+” is used to denote vis-
cous scaling of the lengthz+ = zUτ/ν, velocitiesu+ = u/Uτ
and timet+ = tU2

τ /ν.
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Figure 1: Iso-contours of the pre-multiplied energy spectra of
streamwise velocity fluctuationkxφuu/U2

τ ; Contour levels are
form 0.2 to 2.0 in steps of 0.2. The large “+ ” mark the inner
peak (z+ = 15, λ+

x = 1000) and the outer peak (z/δ = 0.05,
λx/δ = 6); The horizontal dot-dashed lines show the location of
the spectral filters.

Brief review of Hutchins & Marusic [11]

Figure 1 gives an overview of the pre-multiplied streamwise
energy spectra,kxφuu/U2

τ , across the full height of the tur-
bulent boundary layer (wherekx is the streamwise wavenum-
ber). The iso-contours depict the surface formed from the one-
dimensional pre-multiplied spectra ofu fluctuations at each of
the 51 logarithmically spaced measurement stations acrossthe
boundary layer. A more detailed explanation of how these en-
ergy maps are formed is given by Hutchins & Marusic [12, 11].
It is worth noting that the representation here in terms of stream-
wise length-scale (λx/δ) is only a reflected mirror of the con-
ventionalkxφuu/U2

τ versus log(kxδ) plot (equal areas under the
curve will still denote equal energy).

Two distinct peaks can be clearly observed on figure 1 (the lo-
cations of these are marked by the+ symbols). The first peak,
located in the near-wall region, is the energy signature dueto
the viscous-scaled near-wall cycle of elongated high- and low-
speed streaks (Klineet al. [16]). The location of this peak is
fixed in viscous coordinates:z+ = 15 andλ+ = 1000. We
will refer to this peak as the “inner site” in accordance with
Hutchins and Marusic [12]. A second distinct peak appears in
the logarithmic region. We will refer this peak as the “outer
site”. The location of this peak appears to scale on boundary
layer thickness:z/δ = 0.05 andλx = 6δ. It is of interest to
note that this peak will not be visible at low Reynolds numbers
(whereReτ . 1700, see [12, 11]) due to insufficient separation
of scales. This outer peak is most likely the energetic signa-
ture due to the superstructure type events (or VLSM). It has
been shown [12] that the magnitude of this peak (whenkxφuu is
scaled withUτ) increases with Reynolds number.

Using a decomposition for scales below and above a cutoff
length-scale (λ+

x = 7300 andλ+
x = 1000), some interesting fea-

tures of the signal appear. The dot-dashed lines of Figure 1
show the locations of these cut-offs on the energy map.

subscript name spectral filter
L1 large-scales only low-pass λ+

x > 7300
h1 small-scales high-pass λ+

x < 7300
h2 smaller-scales high-pass λ+

x < 1000

Table 2: Filter parameters and key.

Figure 2 shows such a decomposition of a typical fluctuating
signalu+ at z+ = 15. The original signal (shown in figure 2a)
is decomposed into three sub-signal parts;

1. the large-scale componentu+
L1 which is assumed to

be the signature of superstructure-type events (where
λ+

x > 7300, figure 2b)

2. the small-scale component signalu+
h1 (whereλ+

x < 7300,
figure 2c)

3. and the smaller-scale component signalu+
h2 (where

λ+
x < 1000, figure 2d)

It is noted that when a negative large-scale fluctuation occurs,
the amplitude of the small-scale fluctuationsu+

h1 is reduced.
This is even more so foru+

h2. It was this result that prompted
Hutchins & Marusic to suggest that the low-wavenumber mo-
tions associated with superstructure type events in the logregion
influence the near-wallu fluctuations in a manner akin to a pure
amplitude modulation.

We now present a refined analysis based on this observation, at-
tempting to quantify the ‘amplitude modulation’ effect. Specif-
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Figure 2: Example of fluctuatingu signal in the near-wall re-
gion, z+ = 15; (a) raw fluctuating component;(b) large-scale
fluctuationλ+

x > 7300;(c) small-scale fluctuationλ+
x < 7300;

(d) smaller-scale fluctuationλ+
x < 1000; Dashed vertical lines

show region of negative large-scale fluctuation.

ically, we employ the Hilbert transformation to characterise the
envelope of the small-scale fluctuations, comparing this tothe
large-scale filtered signaluL1. The Hilbert transform and its ap-
plication in demodulating signals is outlined briefly in thefol-
lowing section.

The Hilbert transform and amplitude modulation

For every real-valued signalx(t), it is always possible to deter-
mine its Hilbert transformation given by

H {x(t)} =
1
π

P
Z +∞

−∞

x(τ)
t − τ

dτ (1)

whereP indicates the Cauchy principal value of the integral.
H {x(t)} is basically the original signalx(t) with each sinu-
soidal Fourier component shifted by−90◦ for positive frequen-
cies, and by+90◦ for each negative frequency. By this defini-
tion, x(t) andH {x(t)} can form a complex conjugate pair,

Z(t) = x(t)+ iH {x(t)} = A(t)eiφ(t). (2)

This is an analytic signal (all negative frequencies have been
removed). It can be shown (see example given in Appendix 1)
that the modulus of this analytic signal,

A(t) =
√

x2(t)+H {x(t)}2 (3)

represents the envelope of the original real-valued signalx(t).
As will be seen, this relationship is very useful when attempting
to interpret (or demodulate) amplitude modulated signals.A
brief tutorial on the Hilbert transform, with emphasis on
physical interpretation, can be found in Bendat and Piersol[4].

Amplitude modulation refers to the modulation of a high-
frequency signal (carrier signal), with a low-frequency compo-
nent (modulating signal). The principle is simple: the carrier
signal is multiplied by the modulating signal added to some ju-
diciously selected offsetB.

The carrier signal could be defined as,

c(t) = C sin(ωct +φc),

whereC and φc are arbitrary constants. These constants are
here respectively set to values 1 and 0 for simplicity. Figure 3a

shows a carrier signal withωc = 10. Let us also consider an
arbitrary waveform representing the modulating signal,

m(t) = M sin(ωmt +φm)

whereM andφm are again arbitrary constants also set to 1 and
0 for simplicity (typicallyωm < ωc). Figure 3b shows an exam-
ple modulating signal withωm = 2. Amplitude modulation is
attained by forming the product

u(t) = [B+m(t)]c(t) (4)

u(t) = [B+sin(ωm)]sin(ωc) (5)

whereB represents the offset (set to 2 for the present exam-
ple). The modulation depthM/B indicates the extent to which
the modulated variable varies around its original level (inthis
caseC). This must be less than one to ensure a pure amplitude
modulated signal. It can be seen that the modulated signal is
composed of three Fourier components, a carrier wave (ωc) and
two sinusoidal waves (known as sidebands) whose frequencies
are above and below the original carrier wave (ωc − ωm and
ωc +ωm).

The modulus of the analytic signal formed from the Hilbert
transformation ofu(t) (equation 2), would in this case return the
original modulating signalm(t) shifted by the constantB, and is
thus invaluable in demodulating amplitude modulated signals.

An example of the modulated signal as given by equation (5)
is shown in figure 3c, with a modulation depth of 0.5. The
dashed line on figure 3c shows the envelope as calculated from
the Hilbert transform, which in this case exactly matches the
modulating signalm(t) with the appropriate applied shiftB.

From this result, a simple analogy with the results of Hutchins
and Marusic [11] can be formulated. If we consider the exis-
tence of a modulating effect from the large-scale structures im-
posed on to the small-scales in the near-wall region, this would
imply that the envelope of the high-frequency part of the sig-
nal (Figures 2c & 2d) must be directly correlated with the low-
frequency part of the signal (Figure 2b). We will introduce in
the following section the process used to highlight the coupling
between these different scales.
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Figure 3: Example of amplitude modulation; (a) represents
the carrier wavec(t) = sin(10t); (b) represents the modulat-
ing wavem(t) = sin(2t); (c) represents the modulated signal
u(t) = [2+m(t)]c(t) (solid line) and its envelope calculated
from the Hilbert transform (dashed line).

Coupling process

The coupling between the low- and the high-frequency com-
ponents of the signal is determined in the following way. From



Figure 1 presented above, the inner site and outer site are clearly
separated in wavenumber space. Therefore, a “reasonable” cut-
off length-scale for the large-scale motions can be established
(we useλ+

x = 7300 in accordance with [11]). A second cutoff
length for the smaller-scale motions,λ+

x = 1000, was also se-
lected. This choice was motivated by the assumption that the
modulation effect is most discernible in the smaller-scales (fig-
ure 2d).

The low- and high-frequency parts of the signals were obtained
by applying spectral cut-off filters on the raw fluctuating veloc-
ity. More specifically, the large- and small-scale components of
the signal (u+

L1 andu+
h1 respectively) were obtained by applying

respectively a low- and high-pass filter at the cutoff frequency
λ+

x = 7300. The smaller-scale component (u+
h2) was obtained

by applying a high-pass filter at the cutoff frequencyλ+
x = 1000

(see table 2).

In order to determine the relationship between the large- and
small-scale structure contained in any velocity signal, the small-
scale components of the signal (u+

h1 andu+
h2) were analysed us-

ing the Hilbert transformation. The Hilbert transformation al-
lows us to extract the envelope(E(u+

hi)i=1,2) of the signal rep-
resentative of any modulating effect (assumed here to be the
large-scale componentu+

L1). The obtained envelope is low-pass
filtered at the cutoffL1 (same as the large-scale). Hence a
pseudo-low-frequency envelope(EL1(u

+
hi)i=1,2) describing the

modulation of small- and smaller-scale structures is obtained.
It is now possible to compute a meaningful correlation coeffi-
cient, R, of this filtered envelope with the large-scale velocity
fluctuationu+

L1.

Ri =
u+

L1 EL1(u
+
hi)

ũ+
L1 ẼL1(u

+
hi)

, i = 1,2 (6)

where tilde denotes therms value of the signal.

The coupling analysis can be summarised as 5 distinct steps:

1. low-pass filter the raw fluctuating velocityu at the cutoff
frequencyλ+

x = 7300→ large-scale componentu+
L1.

2. high-pass filter the raw fluctuating velocityu at the cut-
off frequenciesλ+

x = 7300 andλ+
x = 1000→ small- and

smaller-scale componentsu+
hi, i=1,2.

3. Hilbert transform the small- and smaller-scale compo-
nents→ envelopesE(u+

hi)i=1,2.

4. low-pass filter the envelopes at the cutoff frequencyλ+
x =

7300→ filtered envelopesEL1(u
+
hi)i=1,2.

5. compute the correlation coefficients between the large-
scale component and the filtered envelopes→ Ri, i=1,2.

Results and discussion

An example of the above coupling analysis is first presented for
a single measurement station. A more global overview of the
modulation, obtained from the application of the analysis across
the full height of the boundary layer, is subsequently presented
in the final figure.

Coupling process on a sample

The wall-normal location chosen to highlight the principlefea-
tures of the coupling process isz+ = 15 (corresponding to the
‘inner peak’ in the pre-multiplied energy spectra due to thenear-
wall cycle). We will initially use the same short sub-sampleas

considered by Hutchins and Marusic [11] and considered previ-
ously here in figure 2.

The large-scale componentu+
L1 for the sample considered here

is already given in figure 2b.
Figures 4 and 5 present step-by-step the respective resultsob-
tained on the small- and smaller-scales decomposition of the
signal. Each figure represents, from top to bottom, the three
steps of the analysis process required to arrive at the filtered
envelope of the small- and smaller-scale components. From the
top, the upper plot (a) in each case shows the filtered signalsu+

h1
andu+

h2 for the respective cutoff length-scalesλ+
x = 7300 and

λ+
x = 1000. The centre plots (b) show the envelopesE(u+

h1) and
E(u+

h2) resulting from the Hilbert transformation of the small-
and smaller-scale signals. The lower plots (c) show the filtered
envelopesEL1(u

+
h1) andEL1(u

+
h2), obtained from low-pass fil-

tering the envelopes at the cutoffλ+
x = 7300. The large-scale

component (plus an offset) has been superimposed on plots (b)
and (c) as a dashed line in order to show qualitatively the degree
of correlation between the large-scales and the filtered small-
scale envelopes (the filtered envelope is amplified by a factor of
2 in order to enhance the reading of the figures).
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Figure 4: Example of small-scale decomposition on the fluctu-
ating velocity signal atz+ = 15; (a) raw fluctuating component;
(b) the small-scale signalu+

h1 for λ+
x < 7300; (c) its envelope

E(u+
h1); (d) and the filtered envelopeEL1(u

+
h1). The dashed lines

represent the large-scale componentu+
L1 shifted by an offset.
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Figure 5: Example of smaller-scale decomposition on the fluc-
tuating velocity signal atz+ = 15; (a) raw fluctuating compo-
nent; (b) the smaller-scale signalu+

h2 for λ+
x < 1000; (c) its

envelopeE(u+
h2); (d) and the filtered envelopeEL1(u

+
h2). The

dashed lines represent the large-scale componentu+
L1 shifted by

an offset.



Such qualitative correlations have already been discussedon the
filtered signal by Hutchins and Marusic [11]. These observa-
tions are here reinforced. Indeed, both the unfiltered and fil-
tered envelopesE(u+

hi) andEL1(u
+
hi) (plots (b) and (c)) exhibit

lower fluctuations when the fluctuating large-scale component
u+

L1 is negative. This is particularly so for the smaller-scale com-
ponent (Figure 5) in which the filtered envelopeEL1(u

+
h2) ex-

hibits a very close approximation to the large-scale component
u+

L1. When the large-scale component has a negative fluctuating
value (between the vertical dashed lines), the filtered envelope
of the smaller-scales show an increasingly flat and lower level.
The correlation coefficientsRi betweenu+

L1 andE+
L1 (u+

hi) reach
a significant level for both the small- and the smaller-scalecom-
ponents (respectivelyR1 = 0.2 andR2 = 0.25). This establishes
clear quantitative evidence that the large-scale fluctuations, as-
sociated with superstructure type events in the log-region, have
a measurable and well-defined amplitude modulation effect on
the small-scale structures of the near-wall region.

Global evidence of the modulation

The results presented above represent only an instantaneous
sub-section of the signal at a single wall-normal location.In
order to provide more complete evidence of the amplitude mod-
ulation effect, the coupling analysis has been repeated over the
entire signal length (480s, representing 5000–14000 boundary
layer turn-over times), and for all wall-normal measurement sta-
tions. This results in the correlation coefficientRi(z+)i=1,2, rep-
resenting the degree of modulation (between the large-scales
and the filtered envelope) as a function of wall-normal location.

Prior to discussing the physical significance of the correlation
coefficient, it is first necessary to validate the robustnessof the
the coupling analysis. Due to the number and complexity of the
calculations involved in the treatment, it is important to prove
that the results are an intrinsic property of the flow and not just
some mathematical artifact resulting from the different tools
employed. The process is validated on a synthetic signal. The
synthetic signal is constructed using the coefficients fromthe
Fourier decomposed real signal, such that each synthetic mode
has the same amplitude as the corresponding real mode but with
a randomly scrambled phase. In the spectral domain, the phase
has been replaced by a randomly generated number within 0 and
2π. Figure 6a shows subsections of the real and synthetic signal
(left and right hand plots respectively). Note that from a cursory
inspection, both signals look very much like turbulent fluctuat-
ing u velocity signals. This technique produces a synthetic sig-
nal with exactly the same energy spectra and turbulence inten-
sity as the original signal yet without any realistic phase infor-
mation. Figure 6b shows the corresponding energy spectra for
each of the two signals, which are near identical. By analysing
the filtered signals shown in figure 6c it is clear that the syn-
thetic signal (right-hand side) does not seem to be exhibiting
any signs of amplitude modulation. Indeed if we compare the
negative excursions of the large-scale filtered signal (occurring
within the dashed vertical lines of plot (c)) it is clear that the
modulating influence on the smaller-scale signalu+

h2 (lower plot
(c)), so obvious for the real signal, is completely absent for the
phase scrambled case. When this analysis is extended to the
full signals at all wall-normal locations (Figure 6d), we note
that the correlation coefficientRi(z+)i=1,2 for the synthetic sig-
nal exhibits no correlation between large-scale fluctuations and
the filtered small-scale envelope. This is in stark contrastto the
left-hand plot of figure 6d) which shows that, for the real signal,
Ri(z+)i=1,2 can return high levels of correlation, and is a strong
function of wall-normal position.

The correlation coefficientRi(z+)i=1,2 obtained for the real sig-
nal (figure 6d, left) indicates some interesting variation with

wall-normal location. A high level of correlation is observed
in the viscous layer of the boundary layer, decreasing progres-
sively towards the log-region. This is interpreted as strong evi-
dence that the near-wall cycle associated with the viscous layer
is strongly modulated by low wave-number motions associated
with the log-region. In the log-region, the correlation decreases
progressively to reach a zero value at aboutz+ = 300, cor-
responding reasonably well to the position of the outer peak
(z/δ ≈ 0.05⇔ z+ ≈ 365). This reversal in correlation behaviour
is very much as predicted by Hutchins & Marusic [11] who
found that the small-scale energy was smaller under negative
large-scale fluctuations up toz+ ≈ 300, after which a reversal
occurred (and the small-scale fluctuations were more energetic
under negative large-scale excursions).

Conclusion

The Hilbert transformation when employed with careful spec-
tral filtering has revealed strong supporting evidence to con-
firm the initial assumptions proposed by Hutchins and Maru-
sic [11]. In this paper it is shown that, in the viscous and buffer
layers, the large-scale component is analogous to a modulat-
ing signal whilst the small-scale components can be viewed as
a modulated signal. This apparent amplitude modulation, im-
posed by large-scale log region events onto near-wall viscous-
scaled structure, has numerous implications to our assumptions
concerning turbulent boundary layers. The near-wall cycle, as-
sumed for some time now to be an autonomous process, is
shown here to reside under the modulating influence of the
large-scale log region events (superstructures). Hutchins and
Marusic [11, 12] have demonstrated that as Reynolds number
increases the superstructure events will become more and more
pronounced, as the outer peak in the pre-multiplied spectramap
(Figure 1) becomes increasingly comparable in energy to thein-
ner peak. Thus at higher Reynolds numbers we might expect the
amplitude modulation effect documented here to increase. All
of this points towards the conclusion that the large-scale struc-
tures will play an increasingly important role in high Reynolds
number turbulent boundary layers, and could have important
implications to active control of turbulence, such as drag reduc-
tion or lift enhancement.
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Appendix: A note on the Hilbert transformation

We here give a proof to demonstrate that the envelope of a
modulated signal can be obtained from the instantaneous ampli-
tude of the Hilbert transform and the original real-valued signal
(equation 3)

H {x(t)} = (h∗x)(t)

=
Z ∞

−∞
x(τ)h(t − τ)dτ

=
1
π

P
Z ∞

−∞

s(τ)
t − τ

dτ (7)

where

h(t) =
1
πt

(8)

and considering the integral as a Cauchy principal value (which
avoids the singularities atτ = t, andτ = ±∞,).
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Figure 6: Comparison of the coupling analysis between the real signal (left) and the synthetic phase scrambled signal (right); (a)
instantaneous sample of raw fluctuating signal; (b) pre-multiplied energy spectra; (c) large-scale (u+

L1) , small-scale (u+
h1) and smaller-

scale (u+
h2) decomposition; (d) correlation coefficientRi(z+)i=1,2 between the large-scale component and the filtered envelopeof the

(solid) small- and (dashed) smaller-scale component.

Thus, one important property of the Hilbert transformationis

H {cos(t)} = +sin(t) (9)

H {sin(t)} = −cos(t)

Considering a carrier signal (high frequencyωc)

c(t) = C sin(ωct) (10)

and a modulating signal (lower frequencyωm)

m(t) = M sin(ωmt) (11)

the amplitude modulated signal is given as

u(t) = [B+m(t)]c(t) (12)

= [B+M sin(ωmt)]C sin(ωct) (13)

= BC sin(ωct)+MC sin(ωmt)sin(ωct)

= BC sin(ωct) (14)

−
MC
2

(cos[(ωc +ωm)t]−cos[(ωc −ωm)t])

From this form, it is clear that the modulating signalu(t) has
three components: a carrier wave (ωc) and two additional
sinusoidal modes whose frequencies are slightly above and
below the carriers wave (ωc −ωm & ωc +ωm).

The analytic signal ofu(t) is defined as

L(t) = u(t)+ iH {u(t)} = A(t)ei(φ(t)) (15)



where the modulusA(t) and the phaseφ(t) are given as

A(t) =
√

u(t)2 +H {u(t)}2 (16)

φ(t) = arctan
H {u(t)}

u(t)
(17)

The Hilbert transform can be performed on our amplitude mod-
ulated signalu(t) by substituting equation (9) into equation
(14).

H {u(t)} = −BC cos(ωct)

−
MC
2

(sin[(ωc +ωm)t]−sin[(ωc −ωm)t])

= −BC cos(ωct)−MC cos(ωct)sin(ωmt) (18)

Substituting (18) and (14) into (16), the modulusA(t) of the
Hilbert transformationH {u(t)} can be written as

A(t) = [B2C2sin2(ωct)+2BMC2 sin2(ωct)sin(ωmt)

+M2C2sin2(ωmt)sin2(ωct)+B2C2 cos2(ωct)

+2BMC2 cos2(ωct)sin(ωmt) (19)

+M2C2cos2(ωct)sin2(ωmt)]
1
2

= [B2C2 +2BMC2 sin(ωmt)+M2C2sin2(ωmt)]
1
2

= [B+M sin(ωmt)]C (20)

= [B+m(t)]C (21)

i.e. the amplitude of the Hilbert transformation returns the mod-
ulating signal, plus a D.C. component, multiplied by the ampli-
tude of the carrier wave.
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