Reynolds number dependence of the amplitude
modulated near-wall cycle
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Abstract The interaction in turbulent boundary layers between vanyd scale mo-

tions centered nominally in the log region (termed supecstires) and the small
scale motions is investigated across the boundary layés.drfalysis is performed

using tools based on Hilbert transforms. The results, aadarge Reynolds number
range, show that in addition to the large-scale log reginrcaires superimposing a
footprint (or mean shift) on to the near-wall fluctuatiortse small-scale structures
are also subject to a high degree of amplitude modulationtduke large struc-

tures. The amplitude modulation effect is seen to becomgressively stronger as
the Reynolds number increases.

1 Introduction

Advances in numerical simulation, measurement technigunes high Reynolds
number facilities have provided the opportunity in recesang to study in greater
detail the relationship between eddying motions of diffiédength scales in wall-
bounded flows. The near wall-cycle, related to the near-stadlaks described by
Kline et al.[11], has been largely viewed as depending only on globabuis wall

units. The study by Jimenez & Pinelli [7] has shown that tefion can self-sustain
in the absence of an outer region and it is therefore oftezrned to as being au-
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tonomous. This autonomous view was based largely on an stageling of low
Reynolds number flows, which by definition have a limited &ofjscales of mo-
tions. More recently, studies at higher Reynolds numbeth(Wigh-fidelity mea-
surement or simulation) have shown that the near-wall agcdfected by the outer
flow region ([9, 2, 1, 16, 14, 3, 6]) and hence perhaps shouldeaonsidered as
purely “autonomous”. Hutchins & Marusic [4] described thege-scale motions re-
sponsible for this as “superstructures”, with their origominally in the logarithmic
region of the boundary layer. These observations came frp@raments conducted
at a range of Reynolds numbers, and Hutchins & Marusic [4féaihat the strength
(and influence) of the superstructures increased with @sing Reynolds number.
Furthermore, they observed that low-wavenumber energyceaged with these very
large scale motions is not merely superimposed on the nakustreamwise fluctu-
ations, but seem to “amplitude modulate” the small-scalddlations [5].

This paper is concerned with this amplitude modulationratdon between the
large and small (near-wall) scales in turbulent boundaygns In the remainder of
the paper the amplitude modulation effect will be quantifisthg a correlation co-
efficient and the effects of increasing Reynolds numberheltonsidered. (A fuller
discussion of these effects is given in a paper by Ma#hés.[15].)

2 Quantifying amplitude modulation
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Fig. 1 Pre-multiplied energy spectrogram of streamwise velocity fatin ke, /U2 at Re; =
7300 across the turbulent boundary layer.
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Hutchins & Marusic [4] showed that, at sufficiently high Rejals numbers, two
distinctive peaks appear in the pre-multiplied spectnogothe fluctuating stream-
wise velocity, an example of which is shown in figure 1. Here tbordinate sys-
tem,x, y andz, refers to the streamwise, spanwise and wall-normal dinest The
spectral density function of the streamwise velocity flation is described by,
and the streamwise wavenumber and wavelength are denotgdalogl A respec-
tively (whereAy = 21/ky). The superscript+” is used to denote viscous scaling
(zt =2U;/v,ut =u/U; etc.)

The outer peak is related to superstructures. Hutchins &uslar{4] showed
that a very high level of correlation was found between thergid (long wave-
length) signatures afi simultaneously measured at the locations of the inner and
outer peaks. This was understood to mean that the largetistes superimpose their
“footprint” near the wall. To quantify the interaction wedie by decomposing the
signal from a wall normal location corresponding to the inpeak site £~ = 15).
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Fig. 2 Example of small-scale decomposition on fluctuatirigvelocity signal az™ = 15; (a) the
raw signalu™; (b) the large-scale signa["; (c) the small-scale signai; (d) its envelope(e) and
filtered envelope (solid line) against the large-scale compauet-dashed). For comparison, the
mean of the filtered envelope has been adjusted to zero.

Figure 2 shows a sample of thesignal atz" = 15 for Re; = 7300, as well
as its large () and small (s) scale components. Here ‘large’ corresponds to a
long-wavelength filtered signak{ > d retained) and ‘small’ refers to the remain-
der (x < 9). In order to determine the relationship between the laage small-
scale structures contained in any velocity signal, the lsstale component of the
signal (i) is analysed using the Hilbert transformation. This allayssto extract
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an envelopeH(ug)), representative of any modulating effect (assumed hebe to
the large-scale component). The envelope returned by the Hilbert transformation
will track not only the large-scale modulation due to the tegion events, but also
the small-scale variation in the ‘carrier’ signal. To reradhis effect, we filter the
envelope at the same cut-off as the large-scale sigpab(> 1). Hence, a filtered
envelope E (ug)) describing the modulation of small-scale structures isioled.

It is now possible to compute a meaningful correlation coffit, R, of the filtered
envelope with the large-scale velocity fluctuatigh

E E (u5) (1)

2 2
U E (ud)

R—

where\/u:2 denotes the r.m.s. value of the sigmaFor the Reynolds number and
signal shown in figure R s found to be 0.33, which is a significant correlation.

3 Experiments

The experiments for this study were conducted in two faeditThe first being the
High Reynolds Number Boundary Layer Wind-Tunnel (HRNBLWT}tee Univer-
sity of Melbourne with a working section 272 x 1 m. Full details of the facility
are available in Ref. [17]. Measurements consist of vejatieasurements using a
single-normal hot-wire probe across the entire boundamgrjaand close enough to
the wall to measure at the location of the inner peak= 15). The probe is made
using a Wollaston platinum wire sensing element, operat@dmnstant temperature
mode using an AA Lab Systems AN-1003 with overheat ratio®dt8. For each
Reynolds number, the diametiand length of the sensing element was adjusted
to give a constant viscous scaled lengthof= 1U; /v = 22 with| /d = 200, to al-
low comparison without any spatial resolution influencds [feasurements were
made at five separate Reynolds numbers, naniRely= 2800, 3900, 7300, 13600,
and 19000.

The second facility is from very high Reynolds number measants in the
atmospheric surface layer at the SLTEST facility, locatetha Great Salt Lake
Desert in Western Utah. Full details of the facility are &afale in references [10],
[16] and [12]. The unique geography of this site allows ushitamm measurements
in extremely high Reynolds number turbulent boundary IayRe; ~ O(10°)). The
boundary layer develops naturally over 100 km of salt playich is remarkably
flat and has a low surface roughness. Measurements werempedaising an array
of 9 logarithmically spaced wall-normal sonic anemome{@ampbell Scientific
CSAT3) fromz = 1.4 to 25.7 m. We will consider here one hour of data taken
from a period of prolonged neutral buoyancy and steady wintitions. Mean
statistics were found to compare well with canonical tuentiboundary layers from
laboratory facilities [4, 13]. The estimated Reynolds nembasRe; = 650000.
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4 Variationswith Reynolds number

Figure 3 presents the pre-multiplied energy spectra megs,,/U? for all sets of
measurements, in the same manner as presented in figurehkrbugimply shown
with contour levels. The inner-peak is marked by the “ symbols and is seen
to scale well in viscous unitsz{ = 15; A, = 1000) for all cases. The location
of the outer peak was found by Hutchins & Marusic [4] to be/al = 0.06 and
Ax/ 0 = 6, but this was based on a study over a limited Reynolds nurabge. Here,
the data in figure 3, which cover a larger Reynolds numbereaasigows that the
location of the outer peak appears to correspond well wighggometric center of
the logarithmic region (on a log plot), which is indicatedthe vertical dashed lines
in the figure. It should be noted that the data from SLTEST aresicerably less
reliable that the laboratory data, and here are used onlya#&la. For the SLTEST
data, fluctuating signals (and energy spectra) are onlyadnlaiat 9 locations within
the log region.

Figure 4 shows the wall-normal evolution of the degree of l#ogee modulation
Rfor all six Reynolds number considered. The global shapadieurve is seen to
be the same for aRe;. A feature of interest is the wall-normal location at whible t
degree of amplitude modulation crosses zero. This poimekeies the wall-normal
position whereR(z") changes sign, or to be more precise the location at which
the amplitude of the small-scale fluctuations is completglgorrelated with the
large-scale envelope (i.e. a position with no amplitude utettibn), and possibly
may be interpreted as the centre of the “source” locatiorhefrhain modulating
motion. The wall-normal position whef®@ = 0 (marked with the vertical dashed
line) is seen to correspond well with the location of the oyieak which, as seen in
figure 3, agrees well with the nominal mid-point of the logioeg Figure 5 shows
the location of the zero amplitude modulation for all Reylsohumbers considered
here. (It is important to note that the Utah results haveelagor-bars given the
large experimental uncertainties associated with thosasorements.) There are
considerable differences in the literature as to what @omss the bounds of the
log law. Here, our attention is on a nominal location (ratthem a precise one).
However, for comparison two lines are shown in figure 5 asreg#s of the centre
of the logarithmic region (on a log plot). The solid line cesponds to a definition

of the log region as 10& z" < 0.15Re; giving 7, = 3.9Rer2, while the dotted

line is based om(Re%/2 < z" < 0.15Re; giving 7, = 0.39Re®*4, from suggestions
by Klewicki et al.[8] and others that the lower bound of the log region is Regsol
number dependent.

Overall, the results in figure 3 & 5 support the notion thatdléer-peak in the
streamwise energy spectra is coincident with the wall-rabtotation at which the
degree of amplitude modulation crosses zero, and that tdmwsnally agrees with
the centre of the log region (all of which are Reynolds nuntegrendent). It is dif-
ficult to interpret this result within a mechanistic destidp of the boundary layer.
Close to the wall, the positive values of correlation arexqseeted. A large-scale

deviation in the local streamwise velocity, will producearesponding change in
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Fig. 3 Reynolds number effect — Iso-contours of the pre-multipliegrgy spectra of streamwise
velocity fluctuatiork@,,/U?; (a) Re; = 2800;(b) Re; = 3900;(c) Re; = 7300;(d) Re; = 13600;

(e) Rer =19000;(f) Re; = 650000; Contour levels are form 0.2 to 1.8 in steps of 0.2; ahgel

“ + " marks the inner-peak locatio( = 15, A, = 1000); The vertical dot-dashed line indicates

the mid-point of the log-layer.

the local velocity gradient at the wall, altering the tudntde production (or input of
vorticity) in the near-wall region. Thus, in this region timagnitude (or envelope) of
the small-scale fluctuations would be expected to followsilge of the large-scale
fluctuations (hence positive valuesR)f Based on the hairpin packet paradigm, one
would expect opposite behaviour to occur at some point withe log region. A
regime of hairpin packets would imply that most of the snsalile vortical activity
would be located within or about the large-scale regionsegfative velocity fluc-
tuation (hence the negative valuesPfn the log region). However, further study
is required before a firm conclusion can be made as to why theggal in sign be-



Reynolds number dependence of the amplitude modulated néaryaie 7

0.8 T T T T T

HRNBLWT — ——
0.6 SLTEST  -eveeee b
0.4 Re; increasing i

Re; increasing -

10 10° 10 10* 10°

Fig. 4 Wall-normal variation of the degre® of modulation for several Reynolds numbeRe; =
2800, 3900, 7350, 13600 & 19000 from laboratory facility (MBLWT); Re; = 6.4 x 10° from
atmospheric surface layer (SLTEST).

10° . . . .

O zt(R=0), Melbourne
—&— zH(R=0), Utah ‘%
1/2
— 3.9Re;
104 L T

10t ‘ ‘ ‘

107 10° 10* 10° 10° 10
Rer

Fig. 5 Wall-normal location where the degree of amplitude modulateathes zerdR = 0) ver-

sus Reynolds number. Lines represent estimates for the locdtitie geometric middle of the

log-layer, corresponding to (solid) 180z" < 0.15Re;, and (dashed) based on Reynolds number

dependant boundari(t@Re%/2 < z" < 0.15Re; (hereK = 1.2).
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tween these two regions should correspond so well to théidocaf the ‘outer site’
in the energy spectra.
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