
Reynolds number dependence of the amplitude
modulated near-wall cycle

IVAN MARUSIC, ROMAIN MATHIS AND NICHOLAS HUTCHINS

Abstract The interaction in turbulent boundary layers between very large scale mo-
tions centered nominally in the log region (termed superstructures) and the small
scale motions is investigated across the boundary layer. This analysis is performed
using tools based on Hilbert transforms. The results, across a large Reynolds number
range, show that in addition to the large-scale log region structures superimposing a
footprint (or mean shift) on to the near-wall fluctuations, the small-scale structures
are also subject to a high degree of amplitude modulation dueto the large struc-
tures. The amplitude modulation effect is seen to become progressively stronger as
the Reynolds number increases.

1 Introduction

Advances in numerical simulation, measurement techniquesand high Reynolds
number facilities have provided the opportunity in recent years to study in greater
detail the relationship between eddying motions of different length scales in wall-
bounded flows. The near wall-cycle, related to the near-wallstreaks described by
Kline et al.[11], has been largely viewed as depending only on global viscous wall
units. The study by Jimenez & Pinelli [7] has shown that this region can self-sustain
in the absence of an outer region and it is therefore often referred to as being au-
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tonomous. This autonomous view was based largely on an understanding of low
Reynolds number flows, which by definition have a limited range of scales of mo-
tions. More recently, studies at higher Reynolds number (with high-fidelity mea-
surement or simulation) have shown that the near-wall cycleis affected by the outer
flow region ([9, 2, 1, 16, 14, 3, 6]) and hence perhaps should not be considered as
purely “autonomous”. Hutchins & Marusic [4] described the large-scale motions re-
sponsible for this as “superstructures”, with their originnominally in the logarithmic
region of the boundary layer. These observations came from experiments conducted
at a range of Reynolds numbers, and Hutchins & Marusic [4] found that the strength
(and influence) of the superstructures increased with increasing Reynolds number.
Furthermore, they observed that low-wavenumber energy associated with these very
large scale motions is not merely superimposed on the near-wall streamwise fluctu-
ations, but seem to “amplitude modulate” the small-scale fluctuations [5].

This paper is concerned with this amplitude modulation interaction between the
large and small (near-wall) scales in turbulent boundary layers. In the remainder of
the paper the amplitude modulation effect will be quantifiedusing a correlation co-
efficient and the effects of increasing Reynolds number willbe considered. (A fuller
discussion of these effects is given in a paper by Mathiset al.[15].)

2 Quantifying amplitude modulation
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Fig. 1 Pre-multiplied energy spectrogram of streamwise velocity fluctuation kxφuu/U2
τ at Reτ =

7300 across the turbulent boundary layer.
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Hutchins & Marusic [4] showed that, at sufficiently high Reynolds numbers, two
distinctive peaks appear in the pre-multiplied spectrogram of the fluctuating stream-
wise velocity, an example of which is shown in figure 1. Here the coordinate sys-
tem,x, y andz, refers to the streamwise, spanwise and wall-normal directions. The
spectral density function of the streamwise velocity fluctuation is described byφuu

and the streamwise wavenumber and wavelength are denoted bykx andλx respec-
tively (whereλx = 2π/kx). The superscript “+” is used to denote viscous scaling
(z+ = zUτ/ν , u+ = u/Uτ etc.)

The outer peak is related to superstructures. Hutchins & Marusic [4] showed
that a very high level of correlation was found between the filtered (long wave-
length) signatures ofu simultaneously measured at the locations of the inner and
outer peaks. This was understood to mean that the large-structures superimpose their
“footprint” near the wall. To quantify the interaction we begin by decomposing the
signal from a wall normal location corresponding to the inner peak site (z+ = 15).
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Fig. 2 Example of small-scale decomposition on fluctuatingu+ velocity signal atz+ = 15; (a) the
raw signalu+; (b) the large-scale signalu+

L ; (c) the small-scale signalu+
S ; (d) its envelope;(e) and

filtered envelope (solid line) against the large-scale component (dot-dashed). For comparison, the
mean of the filtered envelope has been adjusted to zero.

Figure 2 shows a sample of theu signal atz+ = 15 for Reτ = 7300, as well
as its large (uL) and small (uS) scale components. Here ‘large’ corresponds to a
long-wavelength filtered signal (λx > δ retained) and ‘small’ refers to the remain-
der (λx < δ ). In order to determine the relationship between the large-and small-
scale structures contained in any velocity signal, the small-scale component of the
signal (u+

S ) is analysed using the Hilbert transformation. This allowsus to extract
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an envelope (E(u+
S )), representative of any modulating effect (assumed here tobe

the large-scale componentu+
L ). The envelope returned by the Hilbert transformation

will track not only the large-scale modulation due to the logregion events, but also
the small-scale variation in the ‘carrier’ signal. To remove this effect, we filter the
envelope at the same cut-off as the large-scale signal (λx/δ > 1). Hence, a filtered
envelope (EL(u+

S )) describing the modulation of small-scale structures is obtained.
It is now possible to compute a meaningful correlation coefficient,R, of the filtered
envelope with the large-scale velocity fluctuationu+

L

R =
u+

L EL(u+
S )

√

u+
L

2
√

EL(u+
S )

2
(1)

where
√

u2 denotes the r.m.s. value of the signalu. For the Reynolds number and
signal shown in figure 2,R is found to be 0.33, which is a significant correlation.

3 Experiments

The experiments for this study were conducted in two facilities. The first being the
High Reynolds Number Boundary Layer Wind-Tunnel (HRNBLWT) at the Univer-
sity of Melbourne with a working section 27×2×1 m. Full details of the facility
are available in Ref. [17]. Measurements consist of velocity measurements using a
single-normal hot-wire probe across the entire boundary layer, and close enough to
the wall to measure at the location of the inner peak (z+ = 15). The probe is made
using a Wollaston platinum wire sensing element, operated in constant temperature
mode using an AA Lab Systems AN-1003 with overheat ratio set to 1.8. For each
Reynolds number, the diameterd and lengthl of the sensing element was adjusted
to give a constant viscous scaled length ofl+ = lUτ/ν = 22 with l/d = 200, to al-
low comparison without any spatial resolution influences [6]. Measurements were
made at five separate Reynolds numbers, namely:Reτ = 2800, 3900, 7300, 13600,
and 19000.

The second facility is from very high Reynolds number measurements in the
atmospheric surface layer at the SLTEST facility, located at the Great Salt Lake
Desert in Western Utah. Full details of the facility are available in references [10],
[16] and [12]. The unique geography of this site allows us to obtain measurements
in extremely high Reynolds number turbulent boundary layers (Reτ ∼ O(106)). The
boundary layer develops naturally over 100 km of salt playa,which is remarkably
flat and has a low surface roughness. Measurements were performed using an array
of 9 logarithmically spaced wall-normal sonic anemometers(Campbell Scientific
CSAT3) from z = 1.4 to 25.7 m. We will consider here one hour of data taken
from a period of prolonged neutral buoyancy and steady wind conditions. Mean
statistics were found to compare well with canonical turbulent boundary layers from
laboratory facilities [4, 13]. The estimated Reynolds number wasReτ = 650000.
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4 Variations with Reynolds number

Figure 3 presents the pre-multiplied energy spectra maps,kxΦuu/U2
τ for all sets of

measurements, in the same manner as presented in figure 1, buthere simply shown
with contour levels. The inner-peak is marked by the “+ ” symbols and is seen
to scale well in viscous units (z+ = 15; λ+

x = 1000) for all cases. The location
of the outer peak was found by Hutchins & Marusic [4] to be atz/δ = 0.06 and
λx/δ = 6, but this was based on a study over a limited Reynolds numberrange. Here,
the data in figure 3, which cover a larger Reynolds number range, shows that the
location of the outer peak appears to correspond well with the geometric center of
the logarithmic region (on a log plot), which is indicated bythe vertical dashed lines
in the figure. It should be noted that the data from SLTEST are considerably less
reliable that the laboratory data, and here are used only as aguide. For the SLTEST
data, fluctuating signals (and energy spectra) are only available at 9 locations within
the log region.

Figure 4 shows the wall-normal evolution of the degree of amplitude modulation
R for all six Reynolds number considered. The global shape of each curve is seen to
be the same for allReτ . A feature of interest is the wall-normal location at which the
degree of amplitude modulation crosses zero. This point delineates the wall-normal
position whereR(z+) changes sign, or to be more precise the location at which
the amplitude of the small-scale fluctuations is completelyuncorrelated with the
large-scale envelope (i.e. a position with no amplitude modulation), and possibly
may be interpreted as the centre of the “source” location of the main modulating
motion. The wall-normal position whereR = 0 (marked with the vertical dashed
line) is seen to correspond well with the location of the outer-peak which, as seen in
figure 3, agrees well with the nominal mid-point of the log region. Figure 5 shows
the location of the zero amplitude modulation for all Reynolds numbers considered
here. (It is important to note that the Utah results have large error-bars given the
large experimental uncertainties associated with those measurements.) There are
considerable differences in the literature as to what constitutes the bounds of the
log law. Here, our attention is on a nominal location (ratherthan a precise one).
However, for comparison two lines are shown in figure 5 as estimates of the centre
of the logarithmic region (on a log plot). The solid line corresponds to a definition

of the log region as 100< z+ < 0.15Reτ giving z+
M = 3.9Re1/2

τ , while the dotted

line is based onKRe1/2
τ < z+ < 0.15Reτ giving z+

M = 0.39Re3/4, from suggestions
by Klewicki et al.[8] and others that the lower bound of the log region is Reynolds
number dependent.

Overall, the results in figure 3 & 5 support the notion that theouter-peak in the
streamwise energy spectra is coincident with the wall-normal location at which the
degree of amplitude modulation crosses zero, and that this nominally agrees with
the centre of the log region (all of which are Reynolds numberdependent). It is dif-
ficult to interpret this result within a mechanistic description of the boundary layer.
Close to the wall, the positive values of correlation are as expected. A large-scale
deviation in the local streamwise velocity, will produce a corresponding change in
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Fig. 3 Reynolds number effect – Iso-contours of the pre-multiplied energy spectra of streamwise
velocity fluctuationkxφuu/U2

τ ; (a) Reτ = 2800;(b) Reτ = 3900;(c) Reτ = 7300;(d) Reτ = 13600;
(e) Reτ = 19000;( f ) Reτ = 650000; Contour levels are form 0.2 to 1.8 in steps of 0.2; The large
“ + ” marks the inner-peak location (z+ = 15,λ+

x = 1000); The vertical dot-dashed line indicates
the mid-point of the log-layer.

the local velocity gradient at the wall, altering the turbulence production (or input of
vorticity) in the near-wall region. Thus, in this region themagnitude (or envelope) of
the small-scale fluctuations would be expected to follow thesign of the large-scale
fluctuations (hence positive values ofR). Based on the hairpin packet paradigm, one
would expect opposite behaviour to occur at some point within the log region. A
regime of hairpin packets would imply that most of the small-scale vortical activity
would be located within or about the large-scale regions of negative velocity fluc-
tuation (hence the negative values ofR in the log region). However, further study
is required before a firm conclusion can be made as to why the reversal in sign be-
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tween these two regions should correspond so well to the location of the ‘outer site’
in the energy spectra.
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