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Abstract 

Streamwise velocity fluctuations in the inner-region of wall-bounded turbulent flows can be predicted by the model of Marusic, 
Mathis & Hutchins (2010). Only a single large-scale velocity signal from an outer position in the logarithmic region is needed for 
the model, and all other parameters are determined from a once-off calibration experiment. Here we elucidate part of the model 
by investigating the scale-dependent coherence magnitude and phase throughout the boundary layer. The collection of coherent 
scales exhibits a shift with respect to the reference position that is shown to be independent of scale; thus the large-scales are 
non-dispersive. Because these scales comprise a strong coherence, their signature in the inner-region is predicted from an input 
signal acquired at the geometric center of the log-region. Previously this was achieved via single-time stochastic estimation. Here 
we leverage the inherent advantages of spectral linear stochastic estimation for the prediction of these large-scales. 
© 2015 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of The Chinese Society of Theoretical and Applied Mechanics (CSTAM). 
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1. Introduction 

Several decades of research on high-Reynolds-number wall-bounded turbulent flows has revealed an 
organization of large-scale turbulent structures that is most pronounced in the logarithmic region. The large-scale 
coherence is evidenced by structures that comprise significant lifetimes in the streamwise direction, an organization 
in the spanwise direction, and a hierarchical ordering of scales in the wall-normal direction [1,2,3; among others]. 
This coherence is illustrated when considering the scale-dependent coherence between the streamwise velocity 
fluctuations  of two synchronously acquired single-hot-wire anemometry probes in a turbulent boundary layer 
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(TBL). Here we consider data taken in a TBL with a friction Reynolds number of 
 and ). A fixed near-wall probe was employed at a wall-normal position of 

 and a traversing hot-wire spanned forty positions ranging from  to  the experiments were 
performed at the high-Reynolds number boundary layer facility at the University of Melbourne with equipment 
described elsewhere [e.g. 3, 4]. The coherence magnitude is presented in terms of the linear coherence spectrum, 
denoted as  [5], and is computed from the complex-valued cross-spectrum  and the 
power spectra  and  according to the LHS expression in Eq. (1). Here, ‘I’ and ‘O’ refer to the inner- and outer-
probe, respectively, and  is the Fourier transform of . 
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The RHS expression in Eq. (1) is the radial phase  of the scale-dependent cross-spectrum. Note that the local 
mean velocity is used when transforming frequency to inner-scaled wavelength . Coherence spectra for  between 
the near-wall probe and the traversing probe are shown in Fig. 1a. Underlying the coherence magnitude is the 
spectrogram of the traversing wire; the position of the near-wall wire (coherence reference position) is shown with 
the dash-dot line. The observed trend is consistent with the framework of Townsend’s attached eddy-hypothesis; e.g. 
only larger scales remain coherent with the inner-region when moving away from the wall through the log-region. 
The phase for the coherent scales is shown in Fig. 1b. The temporal shift is expressed in outer-scaled time shift 

, where a negative  implies a lag of the wall-wire w.r.t. the traversing probe. It is evident that the temporal 
shift is only weakly dependent on scale; the large-scales are non-dispersive. Similar observations were made when 
the fixed probe was positioned in the geometric center of the log-region. 

 

Fig. 1. (a) Coherence magnitude for the streamwise velocity fluctuations  relative to the near-wall probe (black contour, level range 0.05—0.95, 
level step 0.05). Underlying is the spectrogram of the pre-multiplied energy spectra  (grey contour, level range 0.2—1.8, level step 0.2). 
(b) Scale-dependent shift between the wire positions (phase of coherence) expressed in outer-scaled time shift . 

Previously, Mathis et al. [4] recognized that small-scale fluctuations are modulated by the large-scale coherent 
events. This led to the development of a predictive model for turbulence statistics in the inner-region and was 
derived for the fluctuating streamwise velocity [4, 6-7] and is known as the Inner-Outer Interaction Model (IOIM). 
The near-wall fluctuating velocity signal  at inner position is predicted given a large-scale input signal 

 at position  in the outer layer, according to the two-segment expression given by Eq. (2). 
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The first part encompasses an amplitude modulation of a universal signal , where the large-scale input acts as 
the modulation envelope. The second part models the direct influence of the large-scale events at the wall through 
superposition. Signal  and coefficients , , and  are obtained through a calibration experiment [7]. When we 
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focus on the superposition part of the model two coefficients are of relevance, being  and , and are both 
functions of prediction location  for a fixed outer-layer position  of the model’s input. The calibration 
procedure for obtaining  and  involves the synchronous acquisition of  in the inner-region and 

 in the log-region. A long-wavelength pass-filter is then employed to extract their large-scale signatures: 
 and . This scale decomposition requires a cut-off wavelength to be selected (typically taken as 

) and is assumed to be invariant with Reynolds number [3-4]. Parameters  and  are obtained from the 
correlation of the two large-scale signals and is taken as the maximum of the normalized temporal cross-
correlation coefficient  scaled by the ratio of standard deviations: . The time shift  at which 
that maximum occurs is expressed as a physical inclination angle , where  is the wire-
separation distance and  is the mean velocity at . And so, the aforementioned superposition  implies 
that the large-scale component is imposed on the near-wall prediction through a procedure of scaling its amplitude 
and shifting the entire signal  with one temporal shift. In the context of stochastic estimation it is apparent that 
this condenses to single-time Linear Stochastic Estimation (LSE). In the past several decades, stochastic estimation 
techniques have been applied extensively to coherent turbulent flows to study their structure [8]. In particular, it has 
been shown that multi-time LSE (effectively a frequency-domain approach) results in a better estimate than the 
single-time LSE [9-10]; see also the overview in [11]. Spectral LSE as described by Tinney et al. [12] performs the 
multi-time estimate efficiently in the frequency-domain and is associated with reduced complexity. Furthermore, 
sLSE eliminates the selection of a cut-off wavelength to decompose the signal in small- and large-scales, since this 
is implicitly accounted for during the sLSE procedure. Henceforth, we aim to replace the superposition part of the 
model by sLSE. The spectral approach is also convenient for implementing the IOIM in large-eddy simulation 
(LES). Recently, a similar model for predicting wall-shear stress fluctuations [13] was implemented in LES [14]. 

2. Refined superposition component for IOIM 

A short overview of the model refinement using sLSE is now provided. From the perspective of signal processing, 
the signals  and  form the input and output of a black-box physical system, respectively. For a single 
input at the geometric center of the log-region ( ) and output location near the wall ( ) 
in a  TBL, the scale-dependent coherence is shown in Fig. 2a, according to Eq. (1). As seen 
previously, the large-scales are coherent with an amplitude of  for large wavelengths. Now the sLSE procedure 
requires the ensemble-averaged linear transfer function to be computed according to Eq. (3). 
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Fig. 2. (a) Coherence magnitude  and linear transfer gain  of the streamwise velocity fluctuations between a single inner- ( ) and 
outer-region ( ) signal. (b) Scale-dependent linear transfer phase, expressed in terms of a physical inclination angle. 

Gain  of this complex-valued transfer function is also shown in Fig. 2a, where the grey line reflects the 
unfiltered gain and the black line indicates the filtered gain with a bandwidth moving filter of 10%. Since there is an 
absence of coherence at small wavelengths, the filtered transfer function is subsequently set to zero using a smooth 
roll-off whenever the normalized coherence is below a threshold of 0.1; the results are insensitive to such a 
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threshold due to the clear natural decay trend in the coherence. For the readers perusal we have also indicated the 
scaling coefficient of the superposition part in the IOIM, , and the cut-off wavelength at  (blue 
rectangle). The transfer gain is an analogy of a scale-dependent coefficient , and in comparing  and  it is 
notable that a constant   for the range  is a reasonable simplification of the true –empirically derived– 
transfer function. Concerning the phase of the large-scales, we have plotted the scale-dependent phase  of the 
transfer function in Fig. 2b after transforming the radial phase to a physical inclination angle, so that we could 
compare it to the scale-independent physical inclination angle of the conventional IOIM ( ). Again, a 
constant temporal shift is a reasonable assumption for these non-dispersive scales 

Moving forward with the refinement of the IOIM we can replace coefficients  and  with the frequency-
dependent linear transfer kernel, , which is a function of the wavelength and location . In doing this, 
all coherent large-scales are weighted properly in the estimate, and, their scale-dependent phase is efficiently 
accounted for in one single computation in frequency space. Henceforth, the second part in Eq. (1) becomes the 
inverse Fourier transform of the frequency-domain estimate, given by Eq. (4).  
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The estimates of the large-scale signature at the wall, for the same inner- and outer-region signals used to 
construct Fig. 2, are shown in Fig. 3. Both estimates following from the refined sLSE and conventional single-time 
LSE are shown alongside the unfiltered measured signal at  (Fig. 3a). For reference, the sLSE estimate and the 
long-wavelength pass-filtered signal of the true measurement are compared in Fig. 3b. The high-pass filter was 
constructed from the linear gain  such that we could again avoid the choice of a cut-off wavelength. The 
small difference in the predictions shown in Fig. 3a and Fig. 2 are an illustration of why single-time LSE in the 
original model results in satisfactory predictions (discrepancies would have been larger for more dispersive fields). 

 

Fig. 3. (a) Streamwise velocity fluctuations at ; measured ( ), sLSE ( ) and single-time LSE ( ). (b) Comparison of  and the 
true measurement  filtered according to the linear transfer gain. 

3. New set of model calibration parameters 

Following the sLSE procedure outlined in §2 we can update the IOIM equation, Eq. (2), so that it reflects the new 
superposition component obtained in Eq. (4); the new IOIM equation is given by Eq. (5). 
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Since the model’s input signal of the outer-layer is also present in the modulation part, we have replaced this by 
the superposition estimate. To avoid an ambiguous use of coefficients, we have replaced the original demodulation 
coefficient  in the modulation part by , so that this coefficient equates to parameter group  of the former 
model expression. It is important to emphasize that the only input to Eqs. (4,5) is the unfiltered (raw) signal acquired 
in the log-region: . Two advantages of utilizing sLSE for superimposing the large-scale signature on the 
near-wall prediction can therefore be summarized as follows. First, the time shift between the inner- and outer-
region signals, previously formulated as , is not uniquely defined. The spectral technique avoids this scale-
dependent phase ambiguity, since the phase state of the signals are naturally preserved by the spectral estimation 
coefficients , and eliminates the burden of having to identify a single streamwise shift. Secondly, 
applying sLSE eliminates the need for a scale decomposition that requires the choice of a cut-off wavelength 
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typically taken as . The large-scale coherent signature is implicitly extracted from the input through the 
scale-dependent gain , which can be interpreted as an empirically derived scale-filter. On a final note 
regarding the extraction of the universal signal during the model calibration [7], it is required to compute the 
amplitude modulation coefficient [4] which requires a long-wavelength pass-filter. This filter is constructed from 
gain  such that we again avoid the choice of a cut-off wavelength. While the previous form of the model, 
Eq. (2), required calibration parameters , ,  and universal signal , the new form, Eqs. (4,5) requires , , 
and . The new parameters extracted from a calibration experiment at  are shown in Figs. 4a,b & c, 
respectively. Here, only the transfer gain is shown and the spectrogram of the universal signal. The transfer kernel is 
a function of the inner-scaled prediction location and inner-scaled wavelength . It is important to realize that the 
spectral properties of the universal signal are marginally changed, relative to the former model, due to our utilization 
of all available large-scale coherence during the sLSE procedure for obtaining the superposition signature. 

 

Fig. 4. (a) Wall-normal evolution of the wavelength-dependent linear transfer gain (black lines); blue lines indicate coefficient  up to 
. (b) Wall-normal evolution of coefficient compared to the parameter group  of the former calibration method. (c) Pre-multiplied 

energy spectra of the streamwise velocity fluctuation  for the acquired calibration signal  and universal signal  
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