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Abstract
In this paper we consider the contributions to the

streamwise broadband turbulence intensity from large
and small scale motions in turbulent boundary lay-
ers, where here small-scale refers to motions with
wavelengths less than one boundary layer thickness
long. How these contributions change with increas-
ing Reynolds number is discussed together with the at-
tenuation effects due to insufficient spatial resolution,
particularly in the near-wall region. These consider-
ations are combined with the attached eddy hypoth-
esis to guide a new correction formula that accounts
for spatial filtering effects at all wall-normal positions.
The new formulation is validated against existing data
and is shown to work very well.

1 Introduction
The past decade or so has seen a heightened in-

terest in high Reynolds number wall-bounded turbu-
lent flows. This has largely been driven by the com-
missioning of new facilities that provide detailed ac-
cess to high Reynolds number wall turbulence, under
incompressible conditions. These include the Prince-
ton Superpipe (Zagarola & Smits 1998), the Stanford
pressurized wind tunnel (DeGraaff & Eaton 2000), the
MTL wind tunnel at KTH (Osterlund et al. 2000), the
National Diagnostic Facility at IIT (Nagib et al. 2007),
and the High Reynolds Number Boundary Layer
Wind Tunnel at the University of Melbourne (Nick-
els et al. 2007). In addition, the Surface Layer Turbu-
lence and Environmental Science Test (SLTEST) fa-
cility in Utah (Metzger & Klewicki 2001) has pro-
vided high quality data in the atmospheric bound-
ary layer, which has been invaluable for studying the
behavior at Reynolds numbers one or two orders of
magnitude larger than what is possible in the labo-
ratory. Other, more general purpose facilities, have
also been employed, including the DNW, the German-
Dutch wind tunnel (Fernholz et al. 1995), and the US
Navy’s William B. Morgan Large Cavitation Chan-
nel (Etter et al. 2005, Winkel et al. 2010), where sus-

pended flat pates have been installed into these large-
scale facilities.

The interest in high Reynolds number con-
ditions has also been spurred by other lower
Reynolds number experimental and numerical simula-
tion studies (Adrian et al. 2000, del Alamo et al. 2004,
Abe et al. 2004, Hoyas & Jimenez 2006, Schlatter
et al. 2009, Elsinga et al. 2010) where the availabil-
ity of planar and volumetric information has provided
new insights into the structure and interactions across
the boundary layer. The collective data have raised
questions about how things change at high Reynolds
number.

High Reynolds number effects
One of the main questions that has arisen is how

the mean flow and turbulence intensities scale with
increasing Reynolds number, and this has prompted
new scaling arguments and new criteria for indepen-
dence from initial conditions to be proposed (George
& Castillo 1997, DeGraaff & Eaton 2000, Wei
et al. 2005, Monkewitz et al. 2007 and others). In
this paper we will not focus on the mean velocity as
it has been extensively discussed elsewhere (Monke-
witz et al. 2008, Marusic et al. 2010). Rather, here
we focus on the streamwise turbulence intensities (u2)
and their corresponding spectra. One important new
finding resulting from such data relates to the very-
large scale motions (VLSM) or superstructures (Kim
& Adrian 1999, Hutchins & Marusic 2007), which
are found to be much larger in the streamwise di-
rection than previously believed, and questions re-
main open concerning their scaling and behaviour
as Reynolds number increases. Recently, Mathis
et al. (2009) showed clear evidence that these very
large scale motions interact and modulate the near-
wall motions, including the skin friction, and this non-
linear interaction increases in magnitude and strength
with increasing Reynolds number.

Figure 1 shows a clear indication of the differences
in the u-spectra for zero-pressure-gradient boundary
layers at low and high Reynolds numbers. Here, the



Figure 1: Contour maps showing variation of one-dimensional pre-multiplied u-spectra with wall-normal position for two
Reynolds numbers. An inner and an outer peak are noted at the higher Reynolds number. From Hutchins & Marusic
(2007).

spectra are premultiplied and are shown across the en-
tire boundary layer, where δ is boundary layer thick-
ness, versus dimensionless streamwise wavelength
λ+

x . The friction Reynolds numbers, Reτ = δUτ/ν,
are indicated on the plots. Here, z denotes wall-normal
position, and the superscript “+” denotes normaliza-
tion with either the velocity scale Uτ (= τ0/ρ, where
τ0 is the mean wall shear stress and ρ is fluid density),
or the length scale ν/Uτ , where ν is the fluid kine-
matic viscosity. Hutchins & Marusic (2007) found
plotting spectrograms in such a manner revealed two
prominent peaks: an “inner peak” located nominally at
z+ = 15; λ+

x = 1000, and an “outer peak” at λx ≈ 6δ.
The wall-normal position of the outer peak was found
by Mathis et al. (2009) to be located within the loga-
rithmic layer at z+ ≈ 3.9Re

1/2
τ . The inner peak is

associated with the well-documented near-wall coher-
ent streaks, and scales with wall variables. The outer
peak is associated with superstructures (Hutchins &
Marusic 2007) or the very large scale motions which
are seen in figure 1 to have a very weak signature at
the low Reynolds number, but a major presence at the
higher Reynolds number. As indicated above, the pre-
cise scale for the superstructures remains uncertain.
What is clear is that the signatures from these long
wavelengths extend across the majority of the bound-
ary layer, right down towards the wall. In studying
these two scales it is useful to partition the velocity
signals into large and small length scale contributions.
This is shown in figure 2 where a sharp-spectral fil-
ter was used to separate large-scales motions (with
λx > δ) from small-scale motions (the remainder of
the signal corresponding to λx < δ). Here, Taylor’s
hypothesis of frozen turbulence has been applied, such
that λx = U/f , where U is the local mean velocity
and f is frequency. Figure 2(b) shows how the decom-
posed components change with increasing Reynolds

number. The small-scale component is seen to be
invariant with Reynolds number across most of the
boundary layer, while the outer-component clearly in-
creases in magnitude across all wall-normal positions
with increasing Reynolds number. The increasing in-
fluence in the near-wall region (around z+ = 15) is
noted. The result in figure 2 shows that the u2

+
pro-

file can be considered to be the sum of two compet-
ing modes: a small viscous-scaled component primar-
ily located in the near-wall region, and a larger outer-
scaled component peaking in the log region. There is
considerable overlap between these modes, with the
large-scale extending down to the wall, and a dimin-
ishing small-scale influence penetrating to the edge of
the boundary layer.

Figure 3 shows profiles of u2 in a boundary layer,
scaled with wall variables, for five different Reynolds
numbers. It is noted that the peak turbulence intensity
(at z+ ≈ 15) is seen to slowly increase with increasing
Reynolds number, and from the results in figure 2 it is
clear that this increase is due to increasing large-scale
contributions near the wall.

Spatial resolution effects
The scaling behaviour of u2 and other turbulence

statistics has been clouded in the past due to a number
of issues, one of the most significant being the effect
of insufficient measurement spatial resolution. This is
understandable as the smallest scales in the flow be-
come very small in most facilities in the near-wall re-
gion, and spatially resolving them becomes a major
challenge. A prototypical issue related to this chal-
lenge has been the question of whether u2

+
is invari-

ant at a fixed near-wall z+ (especially the peak loca-
tion z+ = 15) and this has been considered exten-
sively in the literature. Classical wall-scaling argu-
ments suggest that it should be invariant as supported
by the surveys by Mochizuki & Nieuwstadt (1996)



Figure 2: Scale decomposition of the streamwise turbulence intensity profile u2/U2
τ . (a) For Reτ = 7300, together with total

(summed) contribution; (b) Reτ = 3900, 7300, 19000. From Marusic et al. (2010).

Figure 3: Streamwise turbulence intensity pro-
files for hot-wires measurements with
l+ ≈ 22 for Reynolds numbers Reτ =
2820, 3910, 7340, 13620, 18830. Figure adapted
from Hutchins et al. (2009).

and others, while more recent studies, with well re-
solved measurements, such as those of DeGraaff &
Eaton (2000) and Metzger & Klewicki (2001) show
a clear increase in u2

+

PEAK with increasing Reynolds
number. The data shown in figure 3 are taken from
Hutchins et al. (2009) who used hot-wire anemome-
try with different sized wires for each Reynolds num-
ber, such that the length of the sensing element, l, was
matched in dimensionless wall variables. That is, for
each case l+ was matched at a value of 22, while main-
taining an appropriate length-to-diameter ratio of the
wire (> 200) as recommended by Ligrani & Brad-
shaw (1987). While some (small) attenuation will oc-
cur even for l+ = 22 it was argued that this level of
attenuation will be the same for all Reynolds num-
bers. (It is interesting to note that recent studies by
Hultmark et al. 2010 in pipes show no such increase in

u2
+

PEAK even with matched l+ values, suggesting that
there may be fundamental differences between pipe
and boundary layer flows. Here, we will confine our
discussion to boundary layers.)

The effect of insufficient spatial resolution is
shown in figure 4. Here, three different sized hot-wires
with l+ = 22, 79 and 153 are used to measure the same
profile at a given Reynolds number (Reτ = 7300),
and clear attenuation is noted for wall-normal posi-
tions considerably larger than the size of the sensing
element. The corresponding contributions from the
large and small scales, as was done in figure 2, are
also shown in the figure. As expected, the attenua-
tion observed for the larger values of l+ are confined
to under-resolving the small-scale contributions to the
broadband intensity.

It is noted that values of l+ considered in figure
4 are not atypical of high Reynolds number experi-
ments. For example, l+ = 100 in the Princeton Su-
perpipe for Reτ = 105 corresponds to a wire length of
l = 65µm, which is well below that obtainable by con-
ventional hot-wire anemometry. For this reason, con-
siderable effort is currently being devoted to the de-
sign and development of new sub-miniature hot-wires
using micro- and nano-fabrication techniques. An ex-
ample of which is the NanoScale Thermal Anemom-
etry Probe (NSTAP) developed at Princeton (Bailey
et al. 2010).

Notwithstanding these micro-probe advances,
there is a continuing need to better understand and
quantify the effects of limited spatial resolution, par-
ticularly in the near-wall region. It is in this re-
gion that the flow is strongly non-homogeneous in the
wall-normal direction and existing spatial-resolution
schemes, such as that of Wyngaard (1968) that are
based on assumptions of small-scale isotropy, are
clearly inadequate. Alternative methods have been
proposed including that of Chin et al. (2010), which
appear in this symposium’s proceedings. Here a



Figure 4: Turbulence intensity profiles decomposed into
small-scale (λx < δ, solid symbols) and large-
scale components (λx > δ, open symbols). The
symbols show results for the different l+ values.
The lines show sum of small- and large-scale com-
ponents for l+ = 22 (solid line), l+ = 79 (dashed
line) and l+ = 153 (dotted line). Taken from
Hutchins et al. (2009).

detailed account of the missing energy is modeled
using the spanwise-streamwise information in two-
dimensional spectra from a direct numerical simula-
tion (DNS) of turbulent channel flow. The approach
is seen to be promising, despite being rather compli-
cated. In the following we will consider the above de-
scribed effects of changing Reynolds number on the
flow, and use this to guide a new simple formulation
for modeling the effects of spatial resolution across the
boundary layer.

2 Near-wall eddy scales
The above results show that modeling the ef-

fects of spatial filtering requires knowledge of the
local small-scale eddies that contribute to the turbu-
lence intensities. The systematic study by Hutchins
et al. (2009) using a series of wires with varying l+

over a range of Reynolds number, reaffirmed the pre-
vious low Reynolds number study of Ligrani & Brad-
shaw (1987). These studies contend that the criterion
for sufficiently resolved measurements are based on a
value of l+. This is consistent with the findings of
Kline et al. (1967) and many others based on physical
observation that the near-wall coherent streaks scale
with wall units, with a spacing of nominally 100+

(=100ν/Uτ ) over a large range of Reynolds numbers.
Furthermore, there is strong evidence to suggest that
the near-wall streaks are a manifestation, or at least are
associated with, the legs of near-wall attached eddies
as described by Adrian and coworkers (Adrian 2007).
Perry & Chong (1982) proposed a physical model for
wall turbulence based on an assemblage of such eddy-
ing motions, distributed in scale and strength accord-
ing to the Townsend (1976) attached eddy hypothesis.

The essential feature here is that the eddies scale with
their distance from the wall, and Perry & Chong pro-
posed that the smallest attached eddies are on the order
of the Kline et al. streak spacing (O(100+)).

One issue that often arises when discussing spa-
tial filtering effects relates to the fact that the small-
est motions in any turbulent flow scale with the Kol-
mogorov length scale, η, and consequently the appro-
priate criterion for spatial resolution should be stated
as a limiting value of l/η and not l+. However, the
issue here is whether or not the Kolmogorov scale mo-
tions contribute to the broadband turbulence intensi-
ties. Recent studies by Stanislas et al. (2008) and oth-
ers have shown that the core diameter of the smallest
filamentary vortex structures (and likely the segments
of the energy-containing eddies) in boundary layers
are of order of 12η. The only way that these differ-
ent observations can be reconciled is if η+ is approx-
imately a constant in this near-wall region, meaning
that the two scalings are effectively the same (that is,
η ∝ ν/Uτ ). Figure 5 shows estimates for η+ across
the boundary layer using the same data that Hutchins
et al. (2009) used to obtain figure 3. Indeed, the re-
sults show that in the near-wall region (say, z+ < 20)
η+ effectively can be taken as a constant, and across
the entire inner-region, including the log region, η+

versus z+ is invariant with Reynolds number. Similar
results were also found by Carlier et al. (2005) and re-
cently by Yakhot et al. (2010) across a large range of
Reynolds number in pipe flows.

Figure 5: Kolmogorov length scale with wall scaling across
turbulent boundary layers. Data as in Hutchins
et al. (2009). Here, η = (ν3/ε)1/4, where the
isotropic assumption is used to estimate the dis-
sipation rate: ε = 15ν

R∞
0

k2
xφuudkx. Symbols

indicated Reτ values: ◦ 2800, � 3900, � 7300,
4 13600, . 19000.

Given that far from the wall the eddy core sizes
continue to scale with η (Stanislas et al. 2008), this im-
plies that the Kolmogorov length should remain a rel-



evant scale for unresolved energy so long as it is less
than the sensor size (which likely is the case). When
such eddies inevitably ‘die’, their filaments are effec-
tively broken up leading to motions scaling exclusively
with η. Therefore, there will be some measure of unre-
solved energy even at large wall-distances (where l/z
is negligible) and this should strictly follow l/η scal-
ing. However, the results in figure 5 indicate that for
modeling purposes, it does not likely matter whether
we choose l+ as a parameter or l/η. Therefore, for
consistency with Hutchins et al. (2009), in the remain-
der of the paper we will stay with the parameter l+,
even though l/η may be more physically appropriate.
In addition, the use of l+ is more straight-forward to
use as a parameter, as for unresolved measurements η
is not known with certainty and would require some
modeling to estimate the missing contribution to the
dissipation rate.

Attached eddies

The results in figure 4 highlight that the attenua-
tion due to inadequate spatial resolution relates to the
small-scale motions (with λx < δ), and it is interest-
ing to note in the classical logarithmic region (as deter-
mined from the mean flow) these small-scale contribu-
tions to u2

+
also show a nominally logarithmic profile

(as indicated by the solid lines in figure 2b). This is
as predicted by Townsend’s (1976) attached eddy hy-
pothesis. Here, the energy-containing scales of turbu-
lence increase in size with distance from the wall, and
the schematic shown in figure 6 illustrates this concept
using idealized hairpin shaped eddies as the represen-
tative eddies as proposed by Perry & Chong (1982).
Essentially, the attached eddy model involves the idea
that turbulence may be described by a random array
of eddies attached to the wall. The distribution of ed-
dies is such that there are hierarchies of eddies, the
smallest scaling in viscous units and thereafter follow-
ing a geometric progression in size, with the largest
being roughly the height of the boundary layer. There-
fore, these can be taken as the major contributors to the
small-scale energy, which we are interested in mod-
eling. In figure 6 the idea of hierarchies of eddies
is illustrated by lining up eddies of each scale. The
distribution of hierarchies is such that there are many
more small eddies than large eddies; Townsend (1976)
proposed that the probability density function of eddy
sizes should be inversely proportional to the eddy size
to give a region of constant Reynolds shear stress. In
figure 6, a typical hot-wire probe is shown, having sen-
sor width approximately the size of the fourth largest
hierarchy of eddies (blue). At the wall-normal distance
of the probe shown, the sensor captures most of the
contributions from the eddies. However, as the sensor
moves down, it is clear that it will begin to lose con-
tributions from eddies at an increasing rate. It can be
shown that the attenuation in energy is a function of
l/z if a roughly inverse probability density function of

eddies, pH(λ) is chosen. For example, if

pH(λ) =
1
λ

, (1)

and eddies smaller than αl are not resolved at all and
eddies larger than αl are fully resolved, then(

u2
+
)

unresolved
= ∆(u2)+L = C1 log

(
αl

z

)
. (2)

While this might have relevance to very high Reynolds
number flows at distances far from the wall, in the re-
gion of most interest here (i.e., 15 / z+ / 3.9Re

1/2
τ ),

there are many characteristic contributors that should
be accounted for in addition to these idealised attached
eddies. Accounting for such contributors is a difficult
task and is beyond the scope of this paper. However,
the attached eddy model provides a conceptual frame-
work that suggests the lost contributions due to finite,
fixed sensor size should be a function of l/z, simply
because eddy size increases rapidly with wall-distance
and the number of large eddies is much less than the
population of the small eddies.

3 Formulation for the unresolved energy
Recently, Smits et al. (2010) revisited the work of

Hutchins et al. (2009) and proposed that their formu-
lation for missing u2

+
due to spatial resolution at

z+ = 15 could be extended to higher wall-normal
positions (i.e., z+ � 15) with the inclusion of an
additive l/z term. This is consistent with the argu-
ments presented above concerning attached eddies. In
the following we will make use of this proposed result
and adopt a linear scaling in l/z of missing energy,
∆(u2)+L , for z+ � 15.

At z+ = 15, the Hutchins et al. (2009) formulation
for ∆(u2)+L is:

∆(u2)+L = Bl+ + C
l+

Reτ
. (3)

Nearer to the wall, for simplicity it will be assumed
that the lost energy will be a linear function of z+.
This leads to the following conceptual formulations
for lost energy due to spatial resolution:

∆(u2)+L =


Az+ z+ � 15
Bl+ + Cl+/Reτ z+ ≈ 15
Dl+/z+ z+ � 15

.

This can be recast, since M = Bl+ + Cl+/Reτ is a
constant for a given experiment. Therefore,

∆(u2)+L = Mf(z+),

where f(z+)→


k1z

+ z+ � 15
1 z+ ≈ 15
k2/z+ z+ � 15

.



Figure 6: Scale drawing of a hot-wire sensing an artificially arrayed sample of idealized attached eddies. It is observed that the
wire will resolve exponentially less eddies as the wall is approached. Top and front views are also shown.



Figure 7: The function f(z+).

Figure 7 shows these three functions (as broken lines).
A functional form is required that blends between
these three curves, and an ideal tool for achieving
this is a logistic dose response curve, as described by
Joseph & Yang (2009). A modified version is adopted
here of the form

f(z+) = f3 + yb [f2 + ya (f1 − f2)− f3]

where

f1 = k1z
+, f2 = 1, f3 = k2/z+.

The following constants and smoothing functions are
used in the curve fit

ya =
[
1 + (z+/a)m1

]−m−1
1

yb =
[
1 + (z+/b)m2

]−m−1
2

k1 = 1/11.3 k2 = 11.3
a = 9 b = 8
m1 = 8 m2 = 10

The formulation for the missing energy is obvi-
ously heavily dependent on the value of M , the peak
missing energy. Hutchins et al. (2009) determined
the functional form for M = Bl+ + Cl+/Reτ by
curve-fitting experimental data in the Reynolds num-
ber range 2800 < Reτ < 20000 and 11 < l+ < 150.
It is linear in l+ and it is not certain whether the func-
tion will apply for either very large l+ or significantly
higher Reτ , and this will require further verification.

4 Validation of the missing energy for-
mulation

Here we present turbulence intensity data acquired
in the Melbourne high Reynolds number bound-
ary layer facility, (see Hutchins et al. 2009 for de-
tails). The experiments were performed with matched
Reynolds number, but varying sized probes so that the
spatial resolution effects were different for each mea-
surement. Figures 8a & 9a show turbulence inten-
sity results for Reτ = 7300 & 13600 respectively. In
figures 8b and 9b, the unresolved energy modeled by

equation (4) has been added back with the constant M
chosen such that the peak energy is that expected with
a wire length of 22 wall units (as for the most resolved
measurement). That is,

M = B
(
l+ − 22

)
+ C

(
l+ − 22

Reτ

)
. (4)

The function f(z+) is unchanged. The anticipated re-
sult is that the larger sensor data will collapse onto the
l+ = 22 data following the application of the above
correction. This is the only method of validation pos-
sible, since it is not possible to measure/simulate the
fully resolved (l+ ≈ 0) turbulence intensity at this
Reynolds number.

The corrected turbulence intensity profiles agree
very well with the l+ = 22 profile for both higher and
lower Reynolds numbers. The greatest differences in
corrected data occur at the peak location. This could
be partly due to the inaccuracy and/or simplicity of the
curve-fit by Hutchins et al. (2009), however, the differ-
ences are more likely indicative of the extent of exper-
imental repeatability.

A final validation is provided from the channel
flow DNS data of del Alamo et al. (2004) at Reτ =
934. Chin et al. (2009) simulated the spatial resolution
effects of finite sensor sizes by spatially filtering the
DNS data. The results of that study are shown in fig-
ure 10a. In this case, M is chosen so as to correct the
turbulence intensity toward the profile expected with a
wire length of l+ = 19 (for consistency with the pre-
ceding experimental data analysis). That is,

M = B
(
l+ − 19

)
+ C

(
l+ − 19

Reτ

)
. (5)

Again, the function f(z+) does not change. Note that
choosing M in this way means that the effect of the
correction to the l+ = 3.8 profile (corresponding to
the DNS spanwise grid resolution) is an attenuation
toward the l+ = 19 profile. The corrected intensity
profiles are shown in figure 10b. As with the exper-
imental data, the agreement between corrected pro-
files is very good for all but the smallest z+ values.
In fact, the overall agreement is somewhat better than
for the experiments and this is likely due to the fact
that the DNS data are calculated from the same ve-
locity field, while the experimental data are from six
independently measured experiments. The small devi-
ations at z+ < 5 seen for the DNS data corrections are
due to the assumption of the correction formula hav-
ing a simple linear drop off near the wall. It should
strictly follow (z+)2, as determined by a Taylor’s se-
ries expansion at the wall, and this would need to be
modified in any future fine tuning if this very near-wall
region was required.



Figure 8: Left: Turbulence intensity profiles measured with various wire lengths at Reτ = 7300. Right: Turbulence intensity
profiles corrected using equation (4).

Figure 9: Left: Turbulence intensity profiles measured with various wire lengths at Reτ = 13600. Right: Turbulence intensity
profiles corrected using equation (4).

Figure 10: Left: Turbulence intensity profiles from the DNS of del Alamo et al. at Reτ = 934 with simulated spatial resolution
effects (see Chin et al. , 2009). Right: DNS turbulence intensity profiles corrected using equation (4).



5 Conclusions
A functional form for the unresolved contribution

to the streamwise turbulence intensity due to finite sen-
sor size has been proposed. The formulation was cho-
sen to coincide with the peak formulation by Hutchins
et al. (2009) at z+ = 15 and to fall off with l/z as
z+ becomes large as suggested by Smits et al. (2010).
These trends are guided by consideration of the atten-
uation due to unresolved attached eddies. The new
formulation is found to work very well for turbulent
boundary layer data and from simulated results using
DNS channel flow data. The utility of the formula-
tion is its simplicity and ability to correct for all wall-
normal positions.
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