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Abstract Experimental results are presented for high Reynolds number turbu-
lent boundary layers. A flat plate zero pressure gradient layer has been
studied in a new high Reynolds number boundary layer tunnel. Mea-
surements were made of the mean flow in the Reynolds number range
of 3.6 % 10° < Ry < 6.0 x 10* based on momentum thickness. The data
supports the existence of a logarithmic law of the wall in the overlap
region and constants £ = 0.41 and A = 5.0 are found to best fit the
data.
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1. Introduction

The classical approach to mean flow scaling is to seek similarity laws in
two regions of the flow, a region adjacent to the wall and region adjacent
to the edge of the boundary layer. These regions are often referred to as
the inner flow region and the outer flow region. Applying dimensional
analysis arguments in these regions leads to. the classical laws

U/U, =1 (U ) (1)
(Ul - U)/U'r zQ'(z/ﬁc) (2)

where U is the mean streamwise velocity, U, is the wall shear velocity, z
is the wall normal coordinate, v is the kinematic viscosity, U, is the local
freestream velocity, and &, is the boundary layer thickness. Equation (1)
(first derived by Prandtl, 1925) represents a similarity law for the inner
flow and is known as the law of the wall, and (2) (first derived by von
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Kdrmdn, 1930) represents a similarity law for the outer flow and is known
as the velocity defect law.

Using the Millikan, 1938 argument that there exists a region of overlap
between (1) and (2) gives the classical results

Uu 1 4
-ﬁ;—;l.n(z )+ A and (3)
Uy -U 1
T -—Eln(n)-!-B (4)

where z* = 2U./v, n = z/d., k is the Karman constant, A is the
universal smooth wall constant and B depends on the large scale flow
geometry. The overlap region will be referred to as the fully turbulent
wall region (TWR) and it is often assumed to begin at z*+ = 100 and
extend to z/d, = 0.15. The Millikan, 1938 argument is one of several
arguments that can be used to derive the logarithmic law of the wall.
However all rely on the basic assumption that in the TWR the velocity
gradient is independent of viscosity. Notable alternatives to the above
theory have been proposed by George and Castillo, 1997 and Barenblatt
et al., 2000,

p Experimental Method

Experiments were performed in an open return blower wind tunnel.
The important feature of the tunnel is the working section length of 27
m. This allows high Reynolds numbers to be obtained through the long
development length, thus avoiding many of the experimental difficulties
associated with using the alternative methods of achieving high Reynolds
numbers, such as the use of compressed air or high velocities. The tunnel
was run at three reference Reynolds numbers corresponding to nominal
reference freestream velocities of Uy, = 10m/s, 20m/s and 30m/s.

In order to maintain a zero pressure gradient the ceiling incorporates
adjustable spanwise slots which allow for the bleeding of air. In addition,
the height of the ceiling can be varied. Through these mechanisms it
was possible to maintain the C}, distribution to within 0.0050 for the
20m/s and 30m/s flow cases, where Cp, = 1 — (U1/Us)?. However for
the 10m/s flow case the the C, distribution fell within +0.0065 .

Mean velocity profiles were measured with both a Pitot-static probe
and a normal hot-wire. The Pitot tube readings were corrected for the
effect of shear using the MacMillan, 1956 correction.

For the three reference Reynolds numbers measurements where made
at different streamwise stations, varying from z = 1m to z = 25m.
This gave a Reynolds number range of 960 < K, < 22400, where K, =
6.Ur /v. Transition to turbulence was initiated by a trip wire of diameter
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(2) Measured with a Pitot tube (b) Measured with a hot-wire

Figure 1. Mean velocity profiles for the complete range of streamwise stations.

0.4mm placed at 2 = 0. The boundary layer studied developed on
the smooth aluminium floor of the working section. The freestream
turbulence level was found to be less than 0.05%.

For the results presented here the Clauser chart was used to determine
the values of U,. It must be noted that for the Clauser chart to return
correct values of U, (3) must be valid and constants A and « specified.
Hence care must be taken in interpreting the mean flow results since an
a-priori assumption about the appropriate mean flow scaling has been
made. However if the Clauser chart method is collapsing the data in the
TWR, across the complete Reynolds number range of the experiments
then at least a velocity scale has been found that is equal to U, to within
a constant of proportionality and the only a-priori assumption is the
that (1) is correct. The approach taken here is to analyse the data using
the Clauser chart with different combinations of constants. If the data
shows poor collapse onto (3) the constants can be discounted as being
the correct ones. Three cases were considered: traditional constants of
% = 0.41 and A = 5.0; the Osterlund, 1999 constants of £ = 0.38 and
A = 4.1; and the Zagarola and Smits, 1998 constants of x = 0.436 and
A = 6.15. To make any further comment on the validity of the constants
in (3) requires an independent method of determining .

3. Inner-flow scaling

Mean velocity profiles measured with a Pitot are shown in figure 1(a)
and measured with a normal hot-wire in figure 1(b). Here the data is
normalised assuming & = 0.41, A = 5.0 and it can be seen good collapse
in the TWR is achieved across the full Reynolds number range. The
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Figure 2.  Deviation of data from log-law (3) when data is normalised to best fit;
(i) k = 0.41 ,A = 5.0, (ii) & = 0.38 , A = 4.1 and (iii) & = 0.436 ,A = 6.15. Only
data in the TWR (100 < z* < 0.15K7) is shown.

quality of the collapse in the TWR is shown in figure 2 where (3) has
been subtracted from the data (ie. A(U/U) is plotted). Also shown
in figure 2 are the results of normalising the data assuming a priori
that the correct constants are x = 0.38, A = 4.1 and xk = 0.436, A =
6.15. It can be seen that the traditional constants (ie. k = 0.41, A =
5.0) best collapse the data onto (3) with specified constants. When
the other constants are used the data shows more scatter and this is
most pronounced in the case of the Zagarola and Smits, 1998 constants.
This scatter is a consequence of fitting the wrong log-law over a large
Reynolds number range. Further, for the Osterlund, 1999 and Zagarola
and Smits, 1998 constants the data does not appear to fit the required
gradient 1/x as a consequence the values of U, obtained from best fit (ie.
Clauser chart) will be more sensitive to the limits defining the TWR.

The suitability of a logarithmic law in the overlap region can be inves-
tigated by plotting the non-dimensional velocity gradient pre-multiplied
by zt, ie.

dir+
o ®)

where UT = U/U,. If a log-law exists, equation (5) should equal a
constant. Further, if the profiles have been scaled with the correct values
of U, the constant should equal 1/x. Figure 3 shows the result of plotting
equation (5) for all data in the range 100 < 2t < 0.15K,. There is no
smoothing or averaging of data, so figure 3 contains a degree of scatter.
Nevertheless, the data does show agreement with the logarithmic law.
The agreement is more clearly seen by considering the individual profile
shown in figure 3, which corresponds to the highest Ry profile. It should
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Figure 3.  Logarithmic law diagnostic function (5) for all profiles, data from TWR,
for (a) Pitot tube and (b) normal wire.
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Figure 4. Power law diagnostic function (6) in TWR, for (a) Rg¢ = 62000 profile
and (b) for Ry = 24000 profile. Both Pitot and hot-wire results are shown.

be noted that the choice of Uy, serves ta simply scale the values of Dy
for a given profile and the Clauser chart method does not force D to a
constant for a given profile.

Figure 4 shows the function

zt dU*
2= G ©)

plotted in the range 100 < zt < 0.15K, for the highest Reynolds
number profile and a lower Reynolds number profile. If a power law is
the correct form equation (6) should plot as a constant value equal to
the power appearing in the power law. However the results indicate that
D, has a preferred slope (consistent with a log law) which suggests the
power law is not the correct functional form. A similar trend is observed
for the other profiles at other Reynolds numbers.

4. Outer-flow scaling

Figure 5 shows the defect velocity obtained from Pitot measurements
normalised using different velocity scales. Based on an analysis at infinite
Reynolds number, George and Castillo, 1997 claims the correct choice for
the velocity scale in (2) is U; and that the choice of U is incompatible
with similarity of the momentum equation in the outer region of the
flow. However as can be seen from figure 5 the quality of the collapse is
much better when U, is used as the scaling velocity. The quality of the
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collapse is further improved if we use U16* /. as the outer velocity scale
where §* is the displacement thickness. Incorporating the integral scale
§* in the definition of the velocity scale effectively forces this collapse.
The velocity scale U;8* /6, is equivalent to the velocity scale Ucp, — U
that Zagarola and Smits, 1998 propose for pipe flow, where Ucy, is the
centreline velocity and U is the average pipe velocity. The question
is whether the correct velocity scale is simply the velocity scale that
best collapses the data. An alternative interpretation is given in Perry
et al.,, 2002 where the zero pressure gradient layer is not assumed to
necessarily be in a state of equilibrium (ie. defect self-similarity). In
the analysis of Perry et al., 2002 U, is used as the velocity scale and
the layer evolves from arbitrary initial conditions to a state very close
to equilibrium. Hence as the layer is evolving defect self-similarity is
not expected. Indeed if the stations upstream of 2 = 5m are removed
from figure 5 the collapse when Uy is used as the velocity scale is greatly
improved.
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Figure 5.  Velocity defect plots using different scaling velocities for all Pitot tube
data (994 < K, < 22407).

5. Conclusions

The mean velocity profiles are found to be well described by a loga-
rithmic law of the wall in the fully turbulent wall region. The traditional
values of x = 0.41 and A = 5.0 are found to best collapse the data. Using
the outer velocity scale U16* /4. leads to the best collapse of the defect
velocity. However using U, as the outer velocity scale may be the correct
choice since this is consistent with the recent calculations of Perry et al.,
2002 where the layer is expected to evolve to a self-similar state.
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