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ABSTRACT

An experimental investigation of turbulent boundary
layers developing in a sink flow pressure gradient was
undertaken. Three flow cases were studied, corre-
sponding to different acceleration strengths. Mean-
flow measurements were taken for all three cases,
while Reynolds stresses and spectra measurements
were made for two of the flow cases. All the lay-
ers were found to attain a state very close to precise
equilibrium. Particular interest was given to the evo-
lution of the boundary layers, in order to test and
further develop the closure hypothesis of Perry et al.
(1994).

INTRODUCTION

A sink flow turbulent boundary layer is one whose
pressure gradient follows that of a two dimensional
potential sink. A sink flow is shown in figure 1, where
Uy is the reference freestream velocity at some conve-
niently selected origin (ie. the beginning of the bound-
ary layer) and at & = L there exists a potential sink
of strength (). The strength of the sink can be char-
acterised by the acceleration parameter K which is

defined as

: v dU
K= 5= (1)
Ui d«
where v is the kinematic viscosity and U; is the
freestream velocity. For a sink flow K remains con-
stant and is given by

K=—. (2)

Figure 1: Sink flow.

Sink flow boundary layers are of fundamental im-
portance, as they represent the only smooth wall
boundary layer that may evolve to a state of precise
equilibrium. A precise equilibrium layer is one where
the mean defect velocity profiles and Reynolds stress
profiles are invariant with the streamwise direction,
when they are scaled with the correct velocity and
length scales. This represents the most strict defini-
tion as given by Townsend (1956) and Rotta (1962).

Previous investigations of sink flows have been con-
fined to low Reynolds number flows (eg Jones & Laun-
der 1972 and Spalart 1986) or focussed on the re-
laminarization phenomenon (eg Narayanan & Ram-
jee 1969 and Simpson & Wallace 1975). This study
provides data at higher Reynolds numbers than past
studies and also shows the full evolution of the layer
to a precise equilibrium state.

EXPERIMENTAL METHOD

Experiments were performed in an open return blower
wind tunnel which has a working section length of 4.2
m. A 1.3 mm trip wire was placed the beginning of
the working section and the boundary layer then de-
veloped along the smooth acrylic floor of the working
section.

The pressure coefficient distribution for all ex-
periments was controlled by a straight rigid ceil-
ing hinged at the beginning of the working section.
The pressure gradient was held fixed for all flows
(L = 5.6m) and the freestream velocity at the trip
wire varied in order to achieve different acceleration
strengths. Three levels of acceleration were studied:
K=54x%x10"":3.6x10"7; and 2.7 x 10~7 which
correspond to nominal velocities at the trip wire of:
Up = 5.0; 7.5; and 10.0 m/s respectively.

Mean profiles were measured using a Pitot-static
probe, in conjunction with a MKS Baratron 170M-
6C manometer. For each flow case 20 profiles were
measured between the streamwise locations ¥ = 400
to £ = 3620 mm. The pitot tube readings were
corrected for the effect of shear using the MacMil-
lan (1956) correction. That is 6;/D = 0.15, where
61 is the effective location of the pitot tube above
its centre line and D) is the external diameter of the
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Figure 2: Streamwise pressure distribution

pitot.

The wall shear velocity U, was determined by both
the Clauser chart and Preston tube methods. How-
ever the Clauser chart values agreed better with mo-
mentum balances and were therefore used in favour
of the Preston tube values.

Reynolds stresses were measured using constant
temperature hot-wire anemometers, for the flows
K =54%x10"7"and K = 2.7 x 10~7. Both nor-
mal wire and cross wire probes were used, which were
dynamically calibrated in a purpose built calibration
tunnel prior to each traverse. The calibration was
checked by shaking the probe at a known frequency.
The errors in u%, u% and u% were within 2.0% and the
errors in mean velocity were within 0.5%. Here uq,
U2 and us are the fluctuating velocity components in
the streamwise (), spanwise (y) and wall-normal ()
directions respectively and overbars denote temporal

averages.

RESULTS
Mean Flow
The coefficient of pressure is defined as

Cp=1—(U1/Uo)? (3)

and for a sink flow the required distribution can be
shown to be given by

1

C=1= Gy (4)

The pressure distribution as measured by wall pres-
sure taps is shown in figure 2 and it fits well the re-
quired distribution of (4), with L = 5.6m.

Representative mean velocity profiles for flow cases
K =54x%x10""and K = 2.7 x 10~7 are shown in
figure 3. The mean profiles begin to exhibit similarity
at approximately /L = 0.6, for all levels of acceler-
ation. The profiles fit well a Coles (1956) law of the
wall law of the wake formulation given by

Law of the wall
U 1 [zUT]

Law of the wake

Z -
U, K?n

1 il
+A——n*+ =29*(3-2n) .
3K K (5)

In the above k is the Karman constant, A is the uni-

v

versal smooth wall constant and n = Z/(Sc, where 6, is
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Figure 3: Law of the wall yplots for; (a) K = 5.4 x
1077 and (b) K = 2.7 x 1077

the boundary layer thickness. The term —7]3/(3}{) in-
cluded in (5) is required to give the correct behaviour
at the edge of the layer. It is found that x = 0.41
and A = 5.0 gives the best fit of (5) to the data. All
profiles are characterised by low values of the Coles
wake factor II. Coles (1957) suggests that a sink flow
will evolve to a ‘pure wall’ flow, that is II = 0. How-
ever pure wall flow is only achieved for the highest
value of K, for the other layers 1l is small but still
finite at the last station.

Figure 4 shows how the mean flow parameters:
S; é.; B; and II evolve, where S = U; /U, and
B = (6%/70)(dp/dz) is the Clauser (1956) pressure
gradient parameter. Qualitatively the evolution of
the mean flow parameters is consistent with the pre-
dicted evolution given by Perry et al. (1994). Rotta
(1962) shows that for a precise equilibrium layer the

following conditions must be satisfied

— = constant, [ = constant.

(6)

All layers appear to approach the above conditions

S = constant,

for stations beyond approximately «/L = 0.6.

The momentum integral equation provides an
method for determining the skin friction and it is
given by

do H+2)6dU
O HED0dh_ oy (7)
dx Uy dx
In general the use of (7) is quite inaccurate since
it involves differentiation of experimentally measured
quantities. However for a sink flow in equilibrium

Ry = constant in which case (7) becomes

Re(H + 1)K = C} /2. (8)
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Figure 4: Evolution of mean flow parameters.

Equation (8) was used to determine the skin friction
for the last measuring station. The Clauser chart
values of U/; show good agreement with momentum
values (1.5%) while the Preston tube values tend to
be lower than the momentum values, this is opposite
to the finding of Patel (1965) who claims the Preston
tube will read high in favourable pressure gradients.

K Momentum | Clauser chart Preston tube
(><107) Ur (ms™) |Ur(ms™1) | %e |Ur (ms™1)| %e
2.7 1.323 1.342 +1.5 1.319 —-0.3
3.6 1.035 1.026 —0.8 1.007 —2.7
5.4 0.737 0.725 —1.5 0.698 —5.2

Table 1: Wall shear velocity U, calculated from mo-
mentum (8) compared with Clauser chart and Pre-
ston tube.

Equation (8) can also be used to predict the equi-
librium solution. By use of (5) expressions for f{g and
H can be generated in terms of mean flow parameter
S and II alone which when substituted into (8) gives

SZEeXp[ﬁS]clK(—QScl +ea)+Sep =0
(9)

where ¢1, ¢2 and F are all known functions of II.
Using the hypothesis of Coles (1957) that II — O for
an equilibrium sink flow, the asymptotic solution for
S as a function of K was determined from (9) and
the result is shown in figure 5. Using (5) the other
asymptotic mean flow parameters can also be found.
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Figure 5: Predicted equilibrium solution compared

to data.

In figure 5 the experimental value! of S is also shown
and it shows excellent agreement with the prediction.

Reynolds Stresses

Profiles of u%/UT2 versus z/é. as measured by a nor-
mal hotwire are plotted in semi-logarithmic coordi-
nates in figure 6. For both values of K as the
layer evolves the profiles of u%/UT2 reduce. Similarity
in u%/UT2 is achieved between the last two stations
(z = 3280, 3580 mm) for a given K value. From
cross-wire measurements it was also found that pro-
files of u%/UT2 and u%/UT2 also assumed similarity be-
tween the last two stations.

The Reynolds shear stress profiles are shown in fig-
ure 7. The development of the profiles follows the
same trends for both values of K, with the profiles
becoming less full as the layer evolves. The profiles
of stations £ = 3280 and = 3580 mm appear very
close to being similar.

Using the mean momentum equation and the mean
continuity equation with a mean velocity profile given
by the law of the wall law of the wake, Perry et al.
have derived an expression for the total shear stress,
which is given by

Z = A0S+ g1 [0, 11, SIC + go[n, 11, 518,
0 (10)

Where ( represents a wake strength gradient param-
eter given by { = S8.(dIl/dx). Predicted Reynolds
shear stress profiles were calculated by subtracting
the viscous contribution from (10), which gives

—wws o d(U)U,)

Uz T r d(zUrJv) (1)

In (11) the Reichardt (1951) profile was used to de-
scribe the mean profile in the buffer region. A typi-
cal comparison between the predicted Reynolds shear
stress and data is shown figure 7 and it can be seen
agreement is quite good. The other profiles give sim-
ilar agreement with predicated profiles. In particular

1The average values beyond station x/1.=0.6 have been
used.
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Figure 6: Streamwise turbulence intensities; (a)

K =54x10"7and (b) K = 2.7x 107

the measured stress is generally lower than the pre-
diction close to the wall but is higher in the outer
part of the layer.

DISCUSSIONS AND CONCLUSIONS

The mean velocity defect profiles and Reynolds stress
profiles when nondimensionalized with U/, show self-
similarity beyond streamwise station /L = 0.6,
when plotted as a function of z/é,. Therefore the lay-
ers evolve to the precise equilibrium state at a/L =
0.6, for the levels of K studied. Further the ex-
perimental mean parameters at equilibrium agree
well with the solution predicted using the integral-
momentum equation in conjunction with the law of
the wall law of the wake.

The evolution of the mean flow parameters agrees
qualitatively with the evolution predicted by Perry et
al. (1994) and it has recently been shown by Maru-
sic el al. (1998) that an extension of the method of
Perry et al. is capable of giving good quantitative
predictions of the evolution.
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