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Abstract— To identify possible vortex packets in color im-
ages, we utilize a spectral clustering method. This pairwise seg-
mentation algorithm allows for the use of spectral techniques
on large data sets bypassing the normally prohibitive computa-
tional costs by employing a numerical solution to the eigenvalue
problem known as the Nyström method. Furthermore, spectral
clustering utilizes one of the most widely used central grouping
clustering algorithms, k-means. Through experimental results,
we show that this clustering algorithm does indeed capture the
streaks in images. Furthermore, we show that with the proper
selection of parameters, the output of the clustering algorithm
is almost identical to the original, thereby encoding all color
information.

I. INTRODUCTION

In the field of fluid dynamics, the nature of the eddy
structure in turbulent flows has been debated for many
decades. The eddy structure is potentially important because
of its role in, for example, generating surface drag at flow
boundaries, mixing hot and cold fluid, transporting trace
species or contaminants, and triggering or suppressing flow
separation on airfoils. As evident from these examples, the
structure of turbulence is important to a vast number of
applications. An improved understanding of the eddy struc-
ture in wall-bounded flows will allow for the development
of accurate numerical models applicable to atmospheric,
transport, and vehicular flows which are too complex to
simulate directly. In addition, if we are able to understand
how eddies contribute to drag, for example, we can develop
strategies to control eddy generation and organization in
order to reduce drag, and/or promote combustion efficiency.
This will have a major impact on many industries including
aerospace, transportation, energy, and chemical processing.

Our fundamental understanding of these flows is limited,
mainly because of our inability to understand the non-linear
interactions that occur between the vortices (or “eddies”)
which make up the motion across a large range of length and
time scales. Due to prohibitive limitations in computational
speed and memory, the wide range of eddy scales present in
most practical applications (which are associated with a high
Reynolds number) cannot be simulated completely. Instead,
we must rely on the results of numerical simulations at a

Fig. 1. (a) Direct numerical simulation of turbulent channel flow,
individual vortices marked by swirl (b) 2D slice of a 3D image. Direction
of flow is from left to right, blue regions indicating slow flow and red
regions indicating fast flow.

relatively low Reynolds number as well as experimentation
to further our understanding.

A key challenge lies in the analysis of the resulting data.
With the advent of modern computing and experimental
techniques, it has become possible to observe and visualize
the eddy structure in relatively simple flows. Instantaneous
fields reveal a structure that is highly complex: the quantities
of interest are three dimensional, convoluted and of varying
size and shape (see Fig. 1).

We seek to identify signatures of superstructures that
dominate the energetics and transport within the field. For
example, observations of planar fields of velocity vectors



Fig. 2. Upper: Grayscale contours of negative streamwise velocity
fluctuation for two streamwise-spanwise planes at z+ = 15 (in near-wall
viscous buffer region). Direct Numerical Simulation (DNS) channel data,
Reτ = 950. Lower: Gaussian filtered plot highlight large scale structures
(> O(δ)). Note the “footprint” of large-scale structures in the z+ = 15
plane.

and vorticity patterns have led researchers to believe that
groups of eddies in turbulent boundary layers tend to
travel together in the form of “packets.” These packets
occur relatively infrequently, however, they are responsible
for a large fraction of momentum transport toward and
away from the wall. These last conclusions result from
an application of a relatively simple algorithm to identify
sections of packets intersecting a measurement plane [1].
The algorithm appears reasonably successful, however, it
still has significant shortcomings. First, we believe that it
underestimates the streamwise extent of packets by failing to
connect related substructures (groups of vortices). Second,
it may underpredict the number or extent of packets by
failing to recognize the full range of eddy scales within
a given packet. Third, it does not make use of more
comprehensive data (e.g., the full vorticity vector instead
of one vorticity component) made available using a novel
optical technique developed recently in our laboratory and
available in simulated data.

The result in Fig. 2 is actually the main motivation
behind this paper. For the turbulence researchers it was
obvious that the superstructures could be identified by eye
(albeit rather qualitatively and crudely), and it was also very
clear that an objective algorithm-based methodology was
needed to extract and quantify these important structures in
a meaningful way, particularly when any significant analysis
will require the “inspection” of thousands of realizations.
Furthermore, Fig. 2 shows only one variable, while many
other important variables need to also be considered for a
complete physical understanding.

Our approach emphasizes the use of pattern recognition
algorithms for the extraction of interesting underlying struc-
tures in turbulent flows. As shown in Fig. 1, the regions of
concern are the dark blue and red colored streaks shown in

the 2D image. Once these regions have been segmented we
can then use region growing techniques to further segment
the regions of interest and obtain a clearer understanding of
their structure.

The organization of this paper is as follows. We begin
by giving a brief overview of clustering methods in the
literature and some previous attempts at identifying eddy
structures. Next, we review spectral clustering using the
Nyström extension in Section III. Experimental results and
discussion are provided in Section IV and finally we con-
clude and provide future work direction in Section V.

II. LITERATURE REVIEW

A great challenge with the analysis of planar velocity
fields from Particle Image Velocimetry (PIV) or volumet-
ric velocity and pressure fields from Direct Numerical
Simulation (DNS) is how to identify and understand the
dynamics captured within the very large and complex data
sets. For example, one time step of data from a turbulent
channel simulation requires 9 GB of memory [2]. A number
of studies have used one of several schemes based on
manipulation of the velocity gradient tensor (e.g., Jeong
and Hussein [3], Zhou et al. [4]) to identify vortex cores
within velocity fields. In these studies, vortex cores are
marked typically by an isosurface, and individual velocity or
vorticity fields are examined visually to assess the impact
or effect of the cores on the surrounding flow dynamics.
In addition, pattern recognition schemes [5] and wavelet
analysis [6] have been employed to investigate the presence
and probability distribution of vortex cores respectively in
a more automated manner. Furthermore, Proper Orthogonal
Decomposition (POD) has been used to characterize a dom-
inant eddy structure in simulated turbulent channel flow [7].
By contrast, we are aware of very little work attempting to
identify quantitatively the presence of larger superstructures
that may contain multiple vortices or may result from the
influence of multiple surrounding vortices.

Clustering techniques can be classified into one of the two
following two categories: pairwise and central groupings. In
central grouping methods, all data points are compared to
k central clusters. In the well known k-means algorithm
[16] for example, the goal is to segment the data so that
the within-cluster squared Euclidean distance is minimized.
Alternatively, pairwise clustering techniques measure sim-
ilarities or dissimilarities between pairs of data points. In
general, pairwise techniques cluster based on the eigenvec-
tors of a matrix derived from the data. For the purpose of
image segmentation, the pairwise techniques have shown
much promise.

Recently, there has been a surge in finding alternative
clustering techniques due to their wide use within the pattern
recognition and data mining domains. Many researchers
have altered the original k-means algorithm so as to address
some of its inherent drawbacks. In [8], Banerjee et al.
provide a more general k-means type algorithm which
uses any Bregman divergence as the distortion measure.



Charalampidis [9] recently suggested a modified k-means
algorithm for clustering vectors containing directional infor-
mation. In [10], Su and Chou use the idea of point symmetry
to motivate a new non-metric distance measure.

One of the main drawbacks of central grouping tech-
niques such as k-means and EM clustering with Gaussian
mixture models is that they require model selection. In high
dimensional space the use of the squared Euclidean distance
as a loss function is not meaningful. Yet, without knowing
the underlying distribution of the data, it may be difficult to
find either kernel k-means techniques or those which utilize
different loss function such as in [8]. Pairwise clustering
algorithms do not suffer from such setbacks.

K-means type methods assume that the data are linearly
separable. For most applications involving high dimensional
data, this requirement is either not known or infeasible. This
restriction has required researchers to construct new meth-
ods for the separation of non-linearly separable data. One
such method is kernel k-means, where the data are projected
into higher dimensional space and linear separators are used
in this new space. The second method is spectral clustering
where data is projected along the principle component axes
of a matrix derived from the data and linearly separated in
that space. These spectral methods have proven promising
for use in image segmentation.

III. SPECTRAL CLUSTERING USING NYSTROM
APPROXIMATION TO NCUT

Spectral clustering has its origin in spectral graph parti-
tioning. Most algorithms use the eigenvectors of the Lapla-
cian of the graph adjacency (pairwise similarity) matrix
to find the optimal graph partitioning. To identify possible
vortex packets, we utilized the spectral clustering algorithm
presented in [11]. This pairwise segmentation algorithm
allows for the use of spectral techniques on large data sets
bypassing the normally prohibitive computational costs by
employing a numerical solution to the eigenvalue prob-
lem known as the Nyström method. Furthermore, spectral
clustering utilizes one of the most widely used central
grouping clustering algorithms, k-means. We will begin our
discussion with a brief outline of the Normalized Cut (NCut)
[12] followed by the Nyström extension application to
NCut [11]. We then outline the spectral clustering algorithm
within this context and give a brief discussion of kernel
selection. We conclude this section with a synopsis of the
k-means algorithm.

A. Normalized Cuts

We begin with a set of points X = {x1, x2, ..., xn} in
Rl that we want to cluster into k subsets and a weighted
adjacency matrix W ∈ RN×N for a graph G = (V, E)
where V are the nodes and E are the edges. The function
used to calculate W is known as the kernel; we will discuss
the selection of an appropriate kernel in Section III-D. If
the matrices A and B represent the bipartition of V, i.e.,
A∪B = V and A∩B = ∅, then the degree of dissimilarity

between these two matrices can be computed as the total
weight of the edges that have been removed, i.e., cut(A,B)=∑

i∈A,j∈B Wij . The degree of the ith node is defined as
the sum over the column of the weighted adjacency matrix,
i.e., di =

∑
j Wij and the volume of a set is the sum of

the degrees within that set, vol(A) =
∑

i∈A di. We define
the Normalized Cut (Ncut) as the fraction of the total edge
connections to all the nodes in the graph:

Ncut(A,B) = cut(A,B)
(

1
vol(A)

+
1

vol(B)

)

=
2cut(A,B)

vol(A)||vol(B)

where || denotes the harmonic mean.
The optimal bipartitioning of a graph is the one that

minimizes this cut value. In [12], Shi and Malik show
that this minimization can be formulated as a generalized
eigenvalue problem. An approximate solution is obtained
by thresholding the eigenvector corresponding to the second
smallest eigenvalue of the normalized Laplacian:

L = D−1/2(D −W )D−1/2

= I −D−1/2WD−1/2 (1)

where D is the diagonal matrix Dii = di and I is the identity
matrix. It can be shown that the matrix L is positive semi-
definite for all matrices W and its eigenvalues lie in the
interval [0, 2], therefore the eigenvalues of D−1/2WD−1/2

are confined to [−1, 1].

B. Nyström Approximation to Ncut

For color images, finding the eigenvectors of the nor-
malized Laplacian matrix L (Eq. (1)) is computationally
expensive. One approach to reduce the complexity of this
problem is to threshold the number of connections per pixel,
thereby restricting the number of pairs considered. This
allows for the use of efficient sparse representations, yet may
result in oversegmentation of homogeneous regions since it
discourages the use of long-range connections. Fowlkes et
al. [11] present an approximation technique as an alternative
method based on random sampling, which is the method we
present here.

Initially, m samples are initially chosen at random from
the set of N pixels. If we reorder the pixels so that the m
samples come first and the remaining n = N − m come
next, we can partition the weighted adjacency matrix W as:

W =
[

A B
BT C

]
(2)

where A ∈ Rm×m, B ∈ Rm×n, C ∈ Rn×n, and N =
m + n, with m ¿ n. Here, A represents the subblock of
weights among the random samples, B contains the weights
from the random samples to the rest of the pixels and C
contains the weights between the remaining pixels. Since
m ¿ n, C is a very large matrix. To overcome this problem,
the Nyström approximation implicitly approximates C using



TABLE I
SPECTRAL CLUSTERING ALGORITHM USING NYSTRÖM

APPROXIMATION TO NCUT

given X = x1, . . . , xn

begin initialize niter, k, σ, nsamp (number of sample points),
do

select nsamp points at random
compute affinities of sampled and remaining points

A =exp(−χ2/2σ2) (affinity between sampled points)
B =exp(−χ2/2σ2) (affinity between remaining points)

compute connection weight d̂ from Eq. (5)
normalize A and B (Eqs. (6) and (7))
find eigenvectors (V ) using Nyström approximation (Eq. (4))
choose k eigenvectors corresponding to the k largest eigenvalues
normalize eigenvectors so that V T V = I (matrix V̂ )
cluster V̂ using k-means algorithm (see Tbl. II)
point xi is assigned to cluster j if and only if
row i of V̂ is assigned to cluster j

end

C = BT A−1B. The quality of the approximation of the full
weight matrix

Ŵ =
[

A B
BT BT A−1B

]
(3)

can be quantified as the norm of the Schur complement
||C−BT A−1B||. The size of this norm is governed by the
extent to which C is spanned by the rows of B giving an
approximation to the entire weight matrix based on a subset
of rows/columns.

Ŵ can be diagonalized in the following manner. If A is
positive definite (the selection of kernel can guarantee the
positive definiteness of A, see Section III-D) and A1/2 is
the square root matrix of A, we define a new matrix S =
A + A−1/2BBT A−1/2 and diagonalize S as S = UΛUT .
It can be shown [11] that Ŵ is diagonalized by V and Λ,
i.e. Ŵ = V ΛV T where

V =
[

A
BT

]
A−1/2UΛ−1/2 (4)

and V is orthonormal i.e., V T V = I . If there is redundancy
in the random samples, pseudoinverses may be used in place
of inverses.

We can now apply this approximation to Ncut by first
computing the row sums of Ŵ . Instead of explicitly evalu-
ating the last block in Eq. (3) this can be done using,

d̂ = Ŵ1 =
[

A1m + B1n

BT 1m + BT A−1B1n

]

=
[

ar + br

bc + BT A−1br

]
(5)

where bc ∈ Rn denotes the column sum of B and ar, br ∈
Rm denote the row sums of A and B, respectively and 1
denotes a column vector of ones (the subscript indicates the
dimension of this vector).

Given d̂, we can now evaluate the blocks of
D̂−1/2Ŵ D̂−1/2, twhich are necessary for approximating the

TABLE II
K-MEANS CLUSTERING ALGORITHM

begin initialize n, k, µ1, µ2, . . . , µk

do classify n samples according to nearest µj

recompute µj

until no change in µj

return µ1, µ2, . . . , µk

end

leading eigenvectors using

Aij ← Aij√
d̂id̂j

, i, j = 1, . . . , m (6)

and

Bij ← Bij√
d̂id̂j+m

, i = 1, . . . , m , j = 1, . . . , n (7)

These can then be applied to Eq. (4) for computing the
approximate eigenvalues of the matrix I− D̂−1/2Ŵ D̂−1/2.

C. Spectral Clustering Algorithm

Once we have an approximate solution to the eigenvector
problem, we can proceed with the spectral clustering algo-
rithm as presented in [13]. Specifically, the k eigenvectors
(matrix V in Eq. (4)) associated with the k largest eigenval-
ues are normalized to form the new matrix V̂ . Treating each
row of V̂ as a point in Rk, we cluster them into k clusters
via the k-means algorithm (see Section III-E). For the case
where k = 2, k-means is not necessary as we can simply
threshold the eigenvectors and obtain a two-way partition.
Finally, the original point xi is assigned to cluster j if and
only if row i of the matrix V̂ was assigned to cluster j.
Table I summarizes the algorithm.

D. Kernel Selection

In Section III-B we mentioned that the matrix A must
be positive definite in order to calculate the approximation.
The positive definiteness of the matrix A depends on the
selection of kernel. Choosing the appropriate kernel for a
given application is an important and well-studied problem.
Within the context of color image segmentation, it has been
shown that using a kernel which utilizes histogram infor-
mation is a robust measure for texture and color separation
[14]. One such kernel is the Red, Green and Blue (RGB)
histogram comparison using the χ2 test.

Given two normalized RGB histograms hi(k) and hj(k),
we can define:

χ2
ij =

1
2

K∑

k=1

(hi(k)− hj(k))2

hi(k) + hj(k)
.

Any term in the sum for which hi(k) = 0 and hj(k) = 0
is set to zero. Applying the χ2 test, we can define the affinity
between a pair of histograms as Wij =exp(−χ2/2σ2). This
kernel is positive definite, as shown in [15], making the
Nyström approximation as outlined in Eq. (4) feasible.



Fig. 3. Results of the SC algorithm on the original image. Top image
corresponds to the case where k=2 and σ=500, and the bottom image k=2
and σ=100.

E. K-Means

One of the most widely used clustering algorithms within
the pattern recognition community is k-means. The goal of
k-means is to segment a given image into k clusters so that
the within-cluster sum of squares is minimized. Specifically,
n data points are clustered into k subsets, kj , containing nj

data points so as to minimize
∑k

j=1

∑
n∈ kj

| xn − µj |2
where xn is the nth data point and µj is the mean of cluster
j.

The algorithm begins by initializing the k-means. If no
information about the data is known a priori, we choose
a random initialization. The algorithm then proceeds to
iteratively minimize the aforementioned summation through
the following two procedures: (i) Assignment step: Assign
pixels to one of the k clusters. In the case of images, we
assign an object to the cluster whose pixel value is the
closest and (ii) Re-estimation step: Calculate the new group
means based on the assignments. The process terminates
when no movement of an object to another group will reduce
the within-group sum of squares. Table II adapted from [16]
summarizes the algorithm.

IV. EXPERIMENTAL RESULTS

The images in Fig. 1 are attained from Direct Numerical
Simulation (DNS) of experimental dual plane Particle Image
Velocimetry (PIV) data. The PIV dataset was obtained from
experiments conducted in a suction-type boundary layer
wind tunnel by [17]. A three-camera polarization based dual
plane PIV system was used. Here, two independent PIV sys-
tems captured images of olive oil droplets of size ∼ 1µm.
In the first of the two systems, a stereoscopic setup was
used, which provided all three velocity components within
a plane. In the second system, a conventional PIV system
was utilized. In this setup, in-plane velocity components
were measured in a neighboring plane located 21 wall units
above in the wall normal direction. To isolate one camera

Fig. 4. (Sections of the images in Fig. 3) Results of the spectral clustering
algorithm on the original image. Top image corresponds to the case where
k=2 and σ=500, and the bottom image k=2 and σ=100.

system from another, the polarization property of laser light
sheets was used to capture simultaneous measurements see
[17] and [18]. Furthermore, this study is performed in the
logarithmic region of a turbulent boundary layer located 110
wall units from the wall.

The DNS dataset we use in this paper is a fully developed
channel flow performed by del Alamo [2]. While this
simulation is not an exact replication of the PIV dataset,
under certain assumptions, it has been shown to be a good
approximation. The simulation of interest in the present
study has Reτ = 934, which is referred to as L950. The
computational domain in this simulation was 8πh units in
the streamwise direction and 3πh units in the spanwise
direction, where h is the channel half width. The sizes of
the domain were set to account for all the energy containing
structures in the flow, especially features with dimensions
of the order of h. The spacing between the vectors was
11.46 × 5.73 wall units in the streamwise and spanwise
directions respectively after de-aliasing.

Fig. 1b shows the image we applied the Spectral Cluster-
ing (SC) algorithm to. The original image is 213×604. Our
goal is to have all gradations of blue in one cluster and all
gradations of red in another. Fig. 3 shows the output of the
SC algorithm on the original 2-dimensional image shown
in Fig. 1b. Here the green and yellow regions correspond
to the blue and red regions, respectively. In the top image,
the number of clusters, k, is 2 and σ=500. In this case, it is
clear that σ is too large. σ is a measure of when two pixels
are considered similar. As σ grows so do the dissimilarities
between pixel values therefore accentuating the differences.
The result is that for large values of σ, we have many small
“islands” of isolated pixels. Upon reducing σ, we have more
smooth results, (see bottom image where σ=100) which is
desirable for this application. This becomes more evident
in Fig. 4, where have have zoomed a small region of the
clustered output. Clearly, it will be easier to utilize region
growing methods to detect the length of the streams in the



Fig. 5. Effects of the number of samples used in the eigenvalue
approximation when k=2 and σ=100. Top image corresponds to the case
where the number of samples is 100, in the middle image the number of
samples is 115, and in the bottom image the number of samples is 75.

image with the lower σ value.
Fig. 5 shows the effects of choosing a different number of

samples for which we apply the Nyström approximation. In
[11], the authors suggest that 100 randomly chosen samples
are enough to capture salient groups in natural images. In
the present study, the image is not natural but synthetic.
As shown in Fig. 5, although we have achieved slightly
better results for the case where the number of samples is
115, in practice and for the purpose of our application, this
may not be as significant when one considers the additional
computation time (66.250 cpu seconds for 100 samples
compared to 130.188s for 115 samples). As expected, when
the number of samples is reduced to 75, there is a significant
decrease in performance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have applied spectral clustering using
the Nyström method, as presented in [11], to the problem
of identifying coherent eddy structure in turbulent boundary
layers. Using a 2-dimensional image from the DNS dataset,
we have shown that with the proper selection of σ, this
algorithm captures most of the underlying structure. Fur-
thermore, we have studied the effects of selecting a smaller
and larger number of samples and have concluded that 100
works well for this application in terms of both computation
time and accuracy.

We intend to use this clustering to aid in the development

of region growing methods to extract “regions of interest”
autonomously. This can be done through an interactive tool,
where a user will initialize the process by selecting a small
region of the clustered image to be expanded.
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