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ABSTRACT 
The average rates of change of the invariants of the 

velocity gradient tensor (Q and R) have been determined 
experimentally in the outer layer of a turbulent boundary 
layer as a function of the invariants themselves. Subsequent 
integration yields trajectories in the QR plane describing the 
average evolution of the local flow topology following a 
fluid particle. The trajectories reveal inward spiralling orbits 
around and converging to the origin. The orbit’s period is 
nearly constant at 14.3δ/Ue, which may be regarded as the 
characteristic lifetime of the energy containing eddies in this 
part of the boundary layer. Furthermore, an empirical model 
for the average Q and R evolution is presented that 
reproduces the main features of the orbits in the vicinity of 
the origin. 

 
 

1. INTRODUCTION 
Turbulence is not a purely random phenomenon, but 

instead is well known to contain topological flow structures 
that are coherent in time and space, commonly referred to as 
eddies or coherent structures (Cantwell 1981). They are 
fundamental to our present understanding of turbulence and 
consequently, in relation to turbulent boundary layers, the 
instantaneous spatial organization of the eddies in hairpin 
vortices, packets and very-large-scale motions has recently 
received important attention (see Adrian 2007 for a review), 
leaving, however, open questions regarding the dynamics 
and time-scales of these eddies. 

In this study we provide a first step in that direction by 
describing experimental findings on the average evolution 
of the local flow topology in a turbulent boundary layer. In 
this evolution two time scales are observed related to 
changing topology by eddy interactions and to decaying 
topology by viscous diffusion respectively. 

For a non-rotating flow such as the turbulent boundary 
layer, the local topology in each point at each time instant 
can be classified based on an evaluation of the velocity 
gradient tensor A =   ∇

r 
V  as outlined in Chong et al. (1990). 

In that study it was further shown that for an incompressible 
flow, the generalized topology depends solely on the second 
and the third invariant of this tensor, Q and R, which are 
given by: 

 

Q = − 1
2

Aij A ji

R = − 1
3

Aij A jkAki

 (1)

 
The first invariant, P = -Aii, is identically zero because of 
continuity. Hence the evolution of the flow topology in the 
present boundary layer can be described by the development 
of Q and R in time. 

The four main local topology classes are summarized in 
the QR phase plane in figure 1. Above the null discriminant 
line (i.e. D = R2/4 + Q3/27 = 0) the flow pattern is focal, 
while below this curve it is non-focal or node/saddle. 
Further subdivision into so-called stable and unstable flow 
patterns is based on the sign of R. For a more complete 
discussion of these local topologies is referred to Chong et 
al. (1990) and Perry and Chong (1987). 

 
 

 

Figure 1: Local flow topologies associated with the 
invariants of the velocity gradient tensor (Q and R) for 
incompressible flow. (taken from Ooi et al. 1999) 

I: stable focus/stretching, 
II: unstable focus/compressing, 
III: stable node/saddle/saddle, 
IV: unstable node/saddle/saddle. 
 
 



In the past investigations of the local flow topology in 
turbulence were almost exclusive to Direct Numerical 
Simulations (DNS, e.g. Cantwell 1993, Soria et al. 1994, 
Chong et al. 1998) or analytical methods (e.g. Cantwell 
1992), because they require all three components of velocity 
as well as their spatial derivatives to evaluate the invariants 
of velocity gradient tensor Q and R. Even with temporal 
information accessible, most of these studies are restricted 
to a description of the instantaneous flow. A procedure to 
investigate the average dynamic behaviour of the invariants 
was proposed by Martin et al. (1998) and Ooi et al. (1999), 
who studied the conditional average evolution of the local 
topology in DNS of isotropic turbulence and showed that 
these topology evolutions describe spiralling orbits in the 
QR space and tend to converge to a point (i.e. the origin). 

Here this approach is extended to the larger scales of 
motion in the outer layer of a turbulent boundary layer (> 50 
viscous length scales) to establish characteristic life-times 
for the large energy containing eddies. Through a 
comparison with DNS data some potentially universal 
aspects of the local flow topology dynamics across the 
range of scales and the different turbulent flows may be 
identified, as well as the differences. 

One of the novel aspects of the present study is the 
experimental approach enabled by recent advances in 
velocimetry methods, in particular Tomographic Particle 
Image Velocimetry (Elsinga et al. 2006). It is an extension 
of standard planar PIV capable of instantaneously 
measuring all three components of velocity in a 3D volume, 
which allows an assessment of the velocity gradient tensor. 
The method can be extended even further to three-
dimensional time-resolved measurements by using high 
repetition rate PIV hardware (Schröder et al. 2008a).  

In the remainder of the paper, the experimental dataset 
is introduced (section 2) and the instantaneous joint-pdf of 
the invariants of the velocity gradient tensor is discussed 
(section 3). Then the method to obtain the average dynamics 
of the invariants will be presented in section 4 with results. 
From the substitution of these results in the Navier-Stokes 
equations rewritten in terms of the velocity gradient tensor 
(section 5), the average effect of the eddy interactions can 
be inferred, which will also lead to the formulation of an 
empirical model for the dynamics of Q and R (section 6). 
Section 7 then summarizes the conclusions. 

 

 
Figure 2: Example of an instantaneous velocity field
measured with time-resolved tomographic-PIV relative the
volume average velocity. Only every other vector is plotted.

 

 
Figure 3: Iso-surface of constant Q in the instantaneous 
velocity distribution of figure 2 (displayed level: 
Q/<QW> = 0.9). 

 
 

2. EXPERIMENTAL DATASET 
The zero-pressure gradient turbulent boundary layer 

data used in this investigation has been obtained from a 
time-resolved tomographic PIV experiment in the water 
tunnel of the Aero & Hydrodynamics Laboratories of TU 
Delft. The setup and first results of this collaborative effort 
between TU Delft Aerospace Engineering and Mechanical 
Engineering Aerodynamics Laboratories, DLR Göttingen 
and LaVision GmbH have been described in Schröder et al. 
(2008b). For completeness, however, we will briefly recall 
some of the boundary layer properties here. The boundary 
layer develops over a 2.5 m long flat plate with an elliptical 
leading edge at a free-stream flow velocity Ue of 0.53 m/s. 
Transition is imposed 15 cm downstream of the elliptical 
leading edge by a zig-zag strip. At the measurement 
location, 2.0 m downstream, the boundary layer thickness δ 
is 37 mm and the Reynolds numbers Reθ and Reτ are 2460 
and 800 respectively. 

The three dimensional velocity distribution   
r 

V (x,y,z, t)  
is evaluated in a volume spanning 1.8δ×1.8δ in 
streamwise, x, and spanwise, y, direction and covering 
z/δ ∈ [0.11 , 0.30] in wall-normal (z) direction over a period 
of 2 seconds. The sampling frequency is 1 kHz 
(corresponding to 70Ue/δ). A typical example of the 
instantaneous vector field is presented in figure 2. The 
spatial resolution, taken as the cross-correlation volume 
dimension, is 0.07δ corresponding to approximately 50 
viscous length scales in each direction. Between subsequent 
velocity volumes in time, the flow structures advect by 
approximately 10 viscous length scales. 

The measured velocity fields correspond to the large 
energy-containing eddies, as can be seen from the pre-
multiplied velocity power spectra presented for example in 
Balakumar and Adrian (2007) and Hutchins and Marusic 
(2007). In the measurement, wavenumbers k < 50/δ are 
resolved, which, at the present Reynolds number, contain 
over 96% of the turbulent kinetic energy associated to the 
streamwise velocity component. Similar values were shown 
for the Reynolds shear stress (Balakumar and Adrian 2007). 

 
3. INSTANTANEOUS DISTRIBUTION OF THE 
INVARIANTS OF THE VELOCITY GRADIENT 
TENSOR 



As a starting point for the discussion of the time 
evolution, we first consider the instantaneous distribution of 
the invariants. An iso-surface of a constant positive Q, as 
determined from the instantaneous velocity field of figure 2, 
is shown in figure 3. Plots like this visualize regions with a 
focal topology and have been used frequently in the past to 
detect vortices. A statistical description of the volume and 
time average distribution of Q and R is given by their joint-
PDF in figure 4, where the invariants are normalized using 
<QW>, the average of the second invariant of the rate of 
rotation tensor (following Ooi et al. 1999). The contour 
lines exhibit the self-similar ‘tear drop’ shape around the 
origin that has also been observed in DNS studies of mixing 
layers, isotropic turbulence, channel and boundary layer 
flow (Soria et al. 1994, Ooi et al. 1999, Blackburn et al. 
1996 and Chong et al. 1998). The similarity in these plots 
across the different flow cases has even inspired some 
speculation about a kind of universality in the invariant 
space of tubulence (Ooi et al. 1999). Moreover, the 
favourable comparison between limited spatial resolution 
PIV and fully resolved DNS may further suggest that this 
extends beyond the smallest scales of motion. The potential 
of universality may therefore render a further statistical 
description of the evolution of turbulent structure in terms 
of Q and R very attractive. 

 

 
Figure 4: Normalized joint PDF of Q and R on a logarithmic
scale. The black solid line indicates points for which the
discriminant of the velocity gradient tensor equals zero. 

 
 

4. DYNAMICS OF THE INVARIANTS 
The dynamics of the invariants is investigated in a 

Lagrangian frame of reference moving with a fluid particle 
by means of their material derivatives, which are given by: 

  
DQ

Dt
=

∂Q

∂t
+ u

∂Q

∂x
+ v

∂Q

∂y
+ w

∂Q

∂z

DR

Dt
=

∂R

∂t
+ u

∂R

∂x
+ v

∂R

∂y
+ w

∂R

∂z

 (2)

 
Note that all the terms on the right hand side depend only on 
the velocity   

r 
V (x,y,z, t) , hence Eq. 2 can be evaluated 

directly for the present dataset without further assumptions. 
Additionally, a conditional averaging technique is employed 
to obtain the mean temporal rate of change of the invariants 

Q and R as a function of invariants themselves. The 
averaging procedure is identical to the one of Ooi et al. 
(1999) and reads as: 

 
DQ

Dt
(Q0,R0 ) =

DQ

Dt
− ΔQ

2 ≤ Q − Q0( )< ΔQ
2 ;− ΔR

2 ≤ R − R0( )< ΔR
2

DR

Dt
(Q0,R0 ) =

DR

Dt
− ΔQ

2 ≤ Q − Q0( )< ΔQ
2 ;− ΔR

2 ≤ R − R0( )< ΔR
2

 

 (3)
 

where Q0 and R0 are the bin centers and  ΔQ and ΔR define 
the bin size over which the material derivative is averaged. 
Their respective values are 0.18<QW> and 0.088<QW>3/2. 
The result is presented in figure 5 as a vector field in the QR 
plane. The magnitude of the mean rate of change of Q and R 
(proportional to the vector length) increases with increasing 
distance from the origin. However, along the R > 0 part of 
the null discriminant curve (black solid line) the vector 
magnitude remains relatively small. These results are 
consistent with DNS of isotropic turbulence (Martin et al. 
1998, Ooi et al. 1999). 
 

 
Figure 5: Conditional averaged rate of change of Q and R, 
i.e. vectors of DQ/Dt and DR/Dt, and a corresponding QR-
trajectory (spiralling solid line). 
 

The conditional average rate of change field can be 
integrated, which produces a QR trajectory as shown on top 
of the vectors in figure 5. The trajectory orbits around the 
origin in clockwise direction and spirals inwards. So, on 
average, the flow topology around a fluid particle changes 
cyclically from unstable focus, unstable node/saddle, stable 
node/saddle to stable focus (see figure 1). The values of Q, 
R and the discriminant D along the trajectory are plotted 
versus integration time in figure 6 each revealing a decrease 
with time corresponding to decreasing velocity gradients. 
Furthermore, the period of each orbit is found to be nearly 
constant at 1.00 seconds, corresponding to 14.3δ/Ue or 
10.4<QW>-1/2, which may be regarded as a characteristic 
life-cycle-time of the eddies in this region of the boundary 



layer (0.11 < z/δ < 0.30 ; 88 < z+ < 240, corresponding 
normally to the outer region, including part of the 
logarithmic region). The period is surprisingly close to the 
estimated eddy-turnover time for the large scale eddies 
δ/urms = 14 δ/Ue, where the rms velocity is taken at the 
center of the measurement volume. The wavelength 
associated to the orbits period is approximately 11 δ (using 
the average velocity in the volume 0.80 Ue as the convective 
velocity). This corresponds well with the location where a 
peak appears in the pre-multiplied power spectra of the 
streamwise component of velocity in wall-bounded 
turbulence. Balakumar and Adrian (2007) and Hutchins and 
Marusic (2007) have linked that peak to the very large-scale 
motions or superstructures observed in wall turbulence. 

 

 
Figure 6: Time evolution of Q, R and the discriminant D
along the conditional average trajectory shown in figure 5. 

 
 
Additionally, a second time scale may be defined that is 

representative of the invariants average decay rate over the 
cycles. The decay, resulting in the inward spiral, is 
associated to viscous diffusion as shown in Martin et al. 
(1998) (see their figure 14). Diffusion increases with 
increasing velocity gradients, hence magnitude of Q and R, 
which is consistent with the reduced decay rate near the 
origin and the orbits being more closely spaced there 
(figure 5). Furthermore, the estimated diffusion time scale is 
L2/ν = 300δ/Ue, where L = 0.13δ is a representative length 
scale (taken as the smallest resolved wavelength). This 
shows diffusion acts on times an order of magnitude larger 
than the orbit’s period, which is again consisted with the 
trajectory in figure 5. Based on the difference in magnitude 
we regard the orbit’s period as the relevant topology 
lifetime dictated by the eddy interactions. (Note that 
ignoring the eddy interactions through both the pressure and 
viscous forces results in a completely different, non-
periodic evolution of the invariants [Cantwell 1993, Martin 
et al. 1998, Ooi et al. 1999].) 

The orbit’s period here is different from the DNS of 
Martin et al. (1998) for isotropic turbulence, who report a 
period of 3 eddy-turnover times, equivalent to 15<QW>-1/2 in 
their case. The discrepancy may be explained by the 
difference in the flow scales investigated (small-scale in 
DNS and larger-scale presently). These differences become 
even more apparent when comparing the percentages of the 
orbit’s period spent in each of the four topological states 
(table 1). For the large-scale motions in the present 
turbulent boundary layer (TBL) the average fluid particle 
spends relatively more time in a focal topology: 77 % 

compared to 42 % of the orbit in the DNS. This time is split 
almost equally between the stable and unstable focus in both 
studies. Another profound difference is found for the 
unstable node part of the orbit: 15 % (TBL) against 53 % 
(DNS), which must be related to the magnitude of the rates 
of change of the invariants being larger for the present 
large-scale motions. As a result the orbit’s period decreases 
and the trajectory will not remain as long near the positive R 
branch of the null-discriminant curve. This part of the QR 
space has previously been associated to high rates of kinetic 
energy dissipation (Cantwell 1993), which is typically a 
small-scale phenomenon. This region is therefore likely to 
display differences. 

Martin et al. (1998) also report that the trajectories are 
not perfectly self-similar especially the region 
corresponding to the nodal topologies. This suggests a 
dependence of the distance of the trajectory from the origin. 
Hence an additional explanation for the observed 
differences in the trajectories, which cannot be ruled out, is 
given by the present trajectories being chosen closer to the 
origin. 

 
 

Table 1: Percentage of the time the QR trajectories spent in 
each of the topologies as indicated in figure 1 for the large-
scale motion in turbulent boundary layer (TBL) and 
isotropic turbulence (DNS of Martin et al. 1998). 

topology TBL DNS 
I: stable focus 39 % 22 % 
II: unstable focus 38 % 20 % 
III: stable node 8 % 6 % 
IV: unstable node 15 % 53 % 

 
5. ANALYTICAL EXPRESSIONS 

The obtained average rate of change can furthermore be 
inserted in the analytical expressions for the time evolution 
of the invariants as derived from the Navier-Stokes 
equations in Cantwell (1992). Conditional averaging these 
expressions results in: 

 
DQ

Dt
(Q0,R0 ) =

−3R0 − AikHki = −3R0 − hQ (Q0,R0 )

DR

Dt
(Q0,R0 ) =

2
3

Q0
2 − AinAnm Hmi = 2

3
Q0

2 − hR (Q0,R0 )

 (4)

 
with 

Hij = −
∂ 2 p

∂xi∂x j
−

∂ 2 p

∂xk∂xk

δ ij

3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +ν

∂ 2Aij

∂xk∂xk
 (5)

 
where δij is the Kronecker delta and Aij is again the velocity 
gradient tensor, Aij = ∂ui/∂xj. The right hand side of Eq. 4 is 
composed of a contribution from local topology through Q 
and R and a non-local contribution through the tensor Hij 
accounting for the interaction of adjacent fluid particles 
through pressure and viscous forces, which depends on the 



position of the other eddies relative to the considered point 
the flow. Hence the latter term will not be a unique function 
of local flow quantities such as Q and R. Consequently the 
adopted conditional averaging procedure yields the average 
effect of these eddy interactions. 
 

 
 

 
Figure 7: Contour plots of the hQ (left) and hR (right) terms 
in Eq. 4, which relate to the contribution of the eddy 
interactions to the conditional averaged rate of change of Q 
and R respectively. The dashed line indicates the region 
where the number of samples in each bin exceeds 5⋅105. 
 
 

To see the contribution of the eddy interactions, the hQ 
and hR terms in Eq. 4 are computed and presented in 
normalized from in figure 7. Again the results reveal a good 
qualitative agreement with those obtained by DNS of 
isotropic turbulence (Martin et al. 1998), although only a 
more detailed view of the region near the origin is presented 
here. Furthermore, there appears to be a greater asymmetry 
in hR in the Q direction in the present data consistent with 
the shorter time period the QR trajectories spend in the 
unstable node region, as mentioned above. From figure 7, it 
can also be seen that these hQ and hR terms are significant 
and are of the same order as the other right-hand-side terms 
in the invariants evolution equations, i.e. compare -3R and 
2/3Q2 along the coordinate axis with the contour levels. The 
sign of -hQ is predominantly opposite to -3R hence has the 
effect of reducing DQ/Dt with respect to the inviscid, 
restricted Eulerian case (Hij = 0, Cantwell 1992). Similarly, 
-hR has the effect of reducing DR/Dt, so the pressure and 

viscous forces act to reduce the average rate of change of 
the invariants. Furthermore, the magnitude of hR is larger 
than 2/3Q2 for negative Q causing DR/Dt to become 
negative in that region, which consequently results in the 
observed spiralling QR trajectories. Hence, unstable nodes 
on average develop into stable nodes. Additionally, the 
pressure and viscous forces allow focal topologies to 
develop into nodal topologies and vice versa as opposed to 
the restricted Eulerian case where focal and nodal 
topologies remain so indefinitely (Cantwell 1992). 

 
6. AN EMPIRICAL MODEL 

The above results are synthesized by fitting relatively 
simple functions to hQ and hR thereby producing an 
empirical model for these terms. Note that only data 
enclosed by the dashed line in figure 7 will be used as the 
bins outside this region contain insufficient samples for 
convergence. Based on the contours in figure 7 a first order 
polynomial in Q and R is selected to approximate hQ, while 
a second order polynomial is used for hR. The polynomial 
coefficients are obtained from a least squares regression 
resulting in the following simple model: 

 
hQ

Qw
3/ 2

= a1R* + a2Q* + a3R*Q* + a4R*2
+ a5Q*2

hR

Qw
2

= b1R* + b2Q*

(6)

 
with 

Q* =
Q

Qw
; R* =

R

Qw
3/ 2

 (7)

 
and where 

a1 = −0.165 ; a2 = −0.318

a3 = 0.428 ; a4 = 0.475 ; a5 = 0.663

b1 = −1.859 ; b2 = 0.213

 (8)

 
Inserting these functions in Eq. 3 returns a set of differential 
equations for a dynamical system of two variables, which 
can then be solved. The mean rate of change of Q and R is 
presented in figure 8 with trajectories. The dashed trajectory 
is a separatrix, above which the trajectories spiral inwards 
as before. However, below this line the trajectories go to 
infinity, which is believed to be unphysical. Hence the 
model can be applied with confidence only inside the fitted 
region (marked by the dashed line in figure 7). Moreover, 
important differences between the model and the actual hQ 
and hR have been observed near the null discriminant curve 
and for large positive R strongly suggesting additional terms 
will be required for improved accuracy and extrapolation 
later on. Determining the nature of these additional terms 
would require either theory or converged data over a larger 
area in the QR space, but preferably both. 

Nevertheless, near the origin the trajectories (the solid 
line in figure 8) reproduce the basic features of the 
measurement, such as the clockwise spiralling orbit, the 
deceasing value of the invariants with time and the 



convergence to the origin. Even the orbit’s period, 1.1 s 
corresponding to 16δ/Ue and 11<QW>-1/2, is in reasonable 
agreement (within 10%), so that the model may be regarded 
as a starting point for future refinements. 

 

 
Figure 8: Empirical model for DQ/Dt and DR/Dt, (vectors) 
and resulting QR-trajectories (spiralling solid line and 
dashed separatrix). 

 
7. CONCLUSIONS 

The evolution of the invariants of the velocity gradient 
tensor, Q and R, in the outer layer of a turbulent boundary 
layer has been studied using a conditional averaging 
approach. The invariants have been determined from time-
resolved 3D experimental (tomographic-PIV) velocity data 
and are representative of the local flow topology related to 
the larger scales of motion (>50 viscous length scales). 

Both the instantaneous joint-PDF of the invariants and 
their average temporal behaviour are consistent with 
previous DNS studies of small-scale motion in isotropic 
turbulence (Martin et al. 1998, Ooi et al. 1999), at least 
qualitatively. In the QR phase plane the temporal evolution 
is characterized by an inward clockwise spiralling trajectory 
converging to the origin, which translates to the topology 
around a fluid particle varying cyclic from unstable focus, 
unstable node, stable node to stable focus, on average. The 
period of the spiral orbit is nearly constant and determined 
to be 14.3δ/Ue, or 10.4<QW>-1/2, in the present flow, which 
may be regarded as a characteristic lifetime for the eddies in 
the outer region of the boundary layer (0.11 < z/δ < 0.30). 
The spatial wavelength length associated to this period is 
approximately 11δ suggesting a relation with the very large 
scale motions in the boundary layer as observed in the 
velocity power spectra (e.g. Balakumar and Adrian 2007, 
Hutchins and Marusic 2007). Furthermore, some 
quantitative differences in the orbit’s period with respect to 
the DNS of isotropic turbulence have been observed and 
discussed. 

Inserting the present results into the invariants evolution 
equations yielded the average effect of the eddy interactions 
through the pressure and viscous forces. An attempt has 
been made to model these terms, hQ and hR, by data fitting 
in order to create a simple set of dynamical system 
equations describing the average evolution of Q and R. This 
empirical model has been shown to reproduce the main 
features of the orbits in the QR plane. However, to capture 

all the detail and improve the accuracy additional, more 
complex terms will need to be included in the model. 

The authors wish to thank F. Scarano, C. Poelma and 
J. Westerweel from T.U. Delft and A. Schröder and 
R. Geisler from DLR, Germany, for providing the 
experimental dataset. The Australian Research Council is 
gratefully acknowledged for their financial support.  

 
REFERENCES 

Adrian, R.J., 2007, "Hairpin vortex organization in wall 
turbulence," Phys. Fluids, Vol. 19, 041301 

Blackburn, H.M., Mansour, N.N., and Canttwell, B.J., 1996, 
"Topology of fine-scale motions in turbulent channel flow," J. 
Fluid Mech., Vol. 310, pp. 269-292. 

Balakumar, B.J. and Adrian, R.J., 2007, "Large- and very 
large-scale motions in channel and boundary-layer flows," Phil. 
Trans. R. Soc. A, Vol. 365, pp. 665-681. 

Cantwell, B.J., 1981, "Organized motion in turbulent flow," 
Ann. Rev. Fluid Mech., Vol. 13, pp. 457-515. 

Cantwell, B.J., 1992, "Exact solution of a restricted Euler 
equation for the velocity gradient tensor," Phys. Fluids A, Vol. 4, 
pp. 782-793. 

Cantwell, B.J., 1993, "On the behavior of velocity gradient 
invariants in direct numerical simulation," Phys. Fluids A, Vol. 5, 
pp.2008-2013. 

Chong, M.S., Soria, J., Perry, A.E., Chacin, J., Cantwell, B.J. 
and Na, Y., 1998, "A study of the turbulence structures of wall-
bounded shear flows using DNS data," J. Fluid Mech., Vol. 357, 
pp. 225-248. 

Chong, M.S., Perry, A.E. and Cantwell, B.J., 1990, "A general 
classification of three-dimensional flow fields," Phys. Fluids A, 
Vol. 2, pp. 765-777. 

Elsinga, G.E., Scarano, F., Wieneke, B. and Van Oudheusden, 
B.W., 2006, "Tomographic particle image velocimetry," Exp. 
Fluids, Vol. 41, pp. 933-947. 

Hutchins, N. and Marusic, I, 2007, "Evidence of very long 
meandering features in the logarithmic region of turbulent boundary 
layers," J. Fluid Mech., Vol. 579, pp. 1-28. 

Martin, J., Ooi, A., Chong, M.S. and Soria, J., 1998, 
"Dynamics of the velocity gradient tensor invariants in isotropic 
turbulence," Phys. Fluids, Vol. 10, pp. 2336-2346. 

Ooi, A., Martin, J., Soria, J. and Chong, M.S., 1999, "A study 
of the evolution and characteristics of the invariants of the velocity-
gradient tensor in isotropic turbulence," J. Fluid Mech., Vol. 381, 
pp. 141-174. 

Perry, A.E. and Chong, M.S., 1987, "A description of eddying 
motions and flow patterns using critical-point concepts." Ann. Rev. 
Fluid Mech., Vol. 19, pp. 125-155 

Schröder, A., Geisler, R., Elsinga, G.E., Scarano, F. and 
Dierksheide, U, 2008a, "Investigation of a turbulent spot and a 
tripped turbulent boundary flow using time-resolved tomographic 
PIV," Exp. Fluids, Vol. 44, pp. 305-316. 

Schröder, A., Geisler, R., Staack, K., Wieneke, B., Elsinga, 
G.E., Scarano, F. and Henning, A., 2008b, "Lagrangian and 
Eulerian views into a turbulent boundary layer flow using time-
resolved tomographic PIV," 14th Int. Symp. on Applications of 
Laser Techniques to Fluid Mechanics, Lisbon, Portugal. 

Soria, J., Sondergaard, R., Cantwell, B.J., Chong, M.S. and 
Perry, A.E., 1994, "A study of the fine-scale motions of 
incompressible time-developing mixing layers," Phys. Fluids, Vol. 
6, pp. 871-884. 
 

 


