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Abstract

Characteristics of external intermittency in the outer region of
turbulent boundary layers are presented based on single-point
hotwire measurements. The distinction between the turbulent
and non-turbulent state of the flow is marked by applying a
threshold on instantaneous kinetic-energy, and this criteria is
found to be adequate for this study. Mean intermittency profiles
are in consistent agreement with previous observations. Fur-
ther, conditionally averaged profiles of the streamwise velocity
and its standard deviation show good agreement with scaling
proposed by Chauhan et al. [3]. Probability density functions
of the lengths of turbulent/non-turbulent zones show a range of
intermediate scales over which power-law scaling is observed.
The observed power-law scaling provides further evidence for a
fractal geometry of the turbulent/non-turbulent interface (TNTI)
over a wide range of Reynolds number and scale separation
[8]. Finally, longer lengths (streamwise extent greater than δ/4,
where δ is the layer thickness) exhibit exponential probability
distribution, indicating that a long turbulent/non-turbulent state
occurs in the flow independent of the length of the alternate state
preceding it.

Introduction

Corrsin & Kistler [6] first proposed the existence of a ‘lami-
nar super-layer’ within which viscous forces transfer mean and
fluctuating vorticity to the non-turbulent fluid. Thereafter sub-
stantial research in the 1970s and 80s focussed on the TNTI
using hotwire measurements. Some notable studies in bound-
ary layers that are relevant to our study are briefly mentioned
here. Fiedler & Head [9] utilised smoke visualisation along with
hotwire and Pitot tube measurements to conclude that the mean
intermittency distribution is dependent on streamwise pressure
gradient but not Reynolds number. The characteristics of the
leading and trailing edges of the turbulent bulges in the outer
part of the boundary layer were examined in Hedley & Kef-
fer [10]. They found that sharp changes occur through the
‘backs’, while the ‘fronts’ exhibit a more diffusive behaviour.
Chen & Blackwelder [5] confirmed the presence of a sharp in-
terface by conditional averages of temperature profiles. Sta-
tistical properties of turbulent/non-turbulent zone lengths were
examined by LaRue & Libby [14], who found an exponential
distribution for large lengths, and by Tsuji et al. [18] who
found a power-law behaviour of the distribution for the inter-
mediate lengths. We shall revisit some of these characteristics
of external intermittency and discuss their scaling using sin-
gle hotwire measurements in a high Reynolds number facility.
Particularly, results for mean intermittency, conditionally aver-
aged profiles and probability density functions of turbulent/non-
turbulent zone lengths will be presented.

Experimental Database

Single-point streamwise velocity measurements are acquired
with a hot-wire in the high Reynolds number boundary layer
wind tunnel (HRNBLWT) at the University of Melbourne. The
present set of measurements are appended by measurements
of Mathis et al. [15] and Kulandaivelu [13] in the same facil-
ity. Parameters relevant to this study are listed in table 1. For
the current measurements, profiles were obtained at uniformly

U∞ δ uτ T = Fs Reτ

(m s−1) (m) (m s−1) Ts ·U∞/δ (kHz) (δuτ/ν)

10 0.38 0.33 7964 50 8079
15 0.37 0.48 24144 50 11558
20 0.36 0.64 16698 50 14771
25 0.35 0.78 21755 50 16999
30 0.34 0.92 26672 50 19672

Table 1. Experimental parameters for measurements in HRNBLWT. U∞

is freestream velocity, δ is boundary layer thickness (based on a fit to
composite profile of [4]), uτ is skin-friction velocity, Ts is acquisition
time, T is equivalent boundary layer turn-over time, Fs is sampling fre-
quency and Reτ is the friction Reynolds number or the Kármán number.

spaced wall-normal heights at each streamwise location; unlike
the previous measurements where the wall-normal spacing is
logarithmic. Uniform wall-normal spacing provides more lo-
cations in the outer region of the flow where statistics can be
examined at any desired value of mean intermittency γ. Also
it should be noted that for these measurements the acquisition
time is considerably larger than that would be typically needed
to obtain converged first- and second-order statistics. Longer
acquisition times are particularly required to obtain converged
results for probability density of long turbulent/non-turbulent
zone lengths. The spatial resolution of a 2.5µm diameter hot-
wire varied from 11 to 31 viscous units. The details of the wind-
tunnel and the experimental set-up can be found in references
[15] and [13].

Detection of Turbulent/Non-turbulent Zones

Detection of intermittency from a velocity signal, i.e. identify-
ing turbulent and non-turbulent regions in the flow, relies on es-
tablishing a kinematic criteria based on at least one component
of velocity. The time derivative of the velocity, the derivative of
the instantaneous shear stress or the magnitude of the velocity
itself are the commonly used detector functions (see Hedley &
Keffer [11] for a list of various functions used in past). In this
study we use a criteria that is a measure of the instantaneous
turbulent kinetic energy. Consider the streamwise velocity sig-
nal Ũ(t) in figure 1(a) that is non-turbulent for some time inter-
vals and turbulent for the remaining time. In the outer part of
the boundary layer, the convection velocity of the non-turbulent
flow can be considered as U∞ (indicated by the dashed line over
Ũ in figure 1a). Over the non-turbulent regions, the fluctua-
tions relative to U∞, i.e. Ũ −U∞ will be of the order of the
freestream turbulence intensity, while in the turbulent regions
of the signal Ũ−U∞ fluctuations will be essentially much larger
than the freestream intensity. Therefore, we consider a detector
function Q̃(t) = [1−Ũ(t)/U∞]

2, as shown in figure 1(b), that is
nearly zero (or of the order of freestream turbulence intensity)
in the non-turbulent region and highly positive in the turbulent
region. Based on the known freestream intensity in the tun-
nel, a threshold of 0.05 is adopted to represent Q̃ in a binary
form Ĩ(t) in figure 1(c). This choice of threshold is made to
achieve a Re-independent collapse of intermittency profiles, an
approach elaborated in [2]. In the turbulent part of the signal
when Q̃ ≥ 0.05, Ĩ = 1 and when Q̃ < 0.05, Ĩ = 0 in the non-
turbulent part. An advantage of our approach is that a particular
chosen threshold value is applicable to detect T/NT zones at
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Figure 1. (a) Example instantaneous streamwise velocity measured by a hot-wire. Dashed line indicates the freestream velocity. (b) Corresponding
detector function Q̃(t). Dashed line is the cut-off for identifying turbulent/non-turbulent zones. (c) Binary intermittency signal. Value one corresponds to
turbulent and zero to non-turbulent states. (d) Average intermittency function. γ = 0.5 occurs at z/δ≈ 2/3 in zero-pressure-gradient turbulent boundary
layers. ‘×’, [15]; ‘�’, [13]; ‘◦’, present. Solid line shows equation (2).

all wall-normal distances in the boundary layer. This approach
is also applicable to PIV data where limited spatial resolution
and/or noise in the data restricts use of derivative based methods
for interface detection. The suitability of using a kinetic-energy
criteria is evident in the results of Refs. [8, 2, 3]. The intermit-
tency γ at a wall-normal position where the signal is acquired is
then calculated as,

γ =
1
Ts

∫ Ts

0
Ĩ(t)dt, (1)

where Ts is the total sampling time. It is well-known that the
profile of γ(z) in a zero-pressure gradient turbulent boundary
layer is accurately described by the error function, [6, 9, 10, 5,
and others].

γ(z) =
1

σi
√

2π

∫
∞

z
exp

[
− (z−Zi)

2

2σ2
i

]
dz (2)

Here, Zi is the mean interface location, i.e. a wall-normal po-
sition where γ = 0.5 and σi is the standard deviation of instan-
taneous interface position zi relative to the mean position Zi.
Figure 1(d) plots 15 profiles of γ(z) against the normalized wall-
normal distance z/δ, spanning a Reynolds number Reτ range of
2 740-22 900. It is observed that Zi/δ≈ 2/3 and σi/δ≈ 1/9 at
high Reynolds numbers [2]. The collapse of data in figure 1(d)
and their agreement with error function (with Zi = 2δ/3 and
σi = δ/9) affirms our approach of detecting intermittency based
on the Q̃ criteria and the chosen threshold.

Results

The turbulent/non-turbulent interface across which a detector
probe leaves the non-turbulent flow and enters the turbulent flow
is termed as ‘fronts’, while the T/NT interface where a probe
leaves the turbulent region and enters the non-turbulent region
is termed as ‘backs’. In figure 1(c), the instantaneous intermit-
tency signal Ĩ changes from 0 to 1 at the fronts and from 1 to 0 at
the backs. The properties of the superlayer at the TNTI can be
examined by studying the measured quantities at the fronts and
backs. From the available data we utilize conditional averaging
as a tool to accomplish this.

Conditional Averages

Conditional averages of streamwise velocity 〈Ũ〉 in the immedi-
ate vicinity of a front (in red) or a back (in blue) are plotted for
measurements with Reτ > 5000 in figure 2(a). The conditional
averages are for signals with mean intermittency γ≈ 0.5 which
corresponds to a location where z/δ≈ 2/3 (see figure 1d). The

abscissa in figure 2 is equivalent streamwise distance from a
front or a back calculated using Taylor’s hypothesis and nor-
malized with inner scaling ν/uτ. We first identify each location
of a front or back in the time signal and collect the velocity at
those locations to calculate the average; this average value cor-
responds to the data-point at ∆t = 0 in figure 2. Averages at
a further lead/lag (non-zero ∆t) relative to the fronts or backs
are similarly obtained. One can clearly see that there is a steep
change in streamwise velocity as one crosses the T/NT inter-
face, as also previously observed by Chen & Blackwelder [5].
Deep in the turbulent region the velocity profile has a linear
behaviour. The slope of profiles deviates from this linear be-
haviour and increases as one approaches the T/NT interface and
again decreases to near-zero in the non-turbulent region. The
change in slope occurs over a thin region at the interface in-
dicative of the presence of a superlayer. If one extrapolates the
linear trend of 〈Ũ〉 from the turbulent and non-turbulent regions
to ∆t = 0, it is clear that a sudden jump in velocity has to oc-
cur across the interface. A jump in streamwise velocity across
the TNTI has also been observed in jets [19, 7], wakes [1] and
boundary layers [3], however these studies examine the con-
ditional profiles in a direction perpendicular to the mean flow.
Here, a steep change of velocity with time is detected at a fixed
position in the outer flow. The similar behaviour of profiles
in figure 2(a) with averages in the wall-normal direction sug-
gests that it is likely that a steep change in velocity across the
interface is independent of the orientation of the interface. Two-
dimensional measurements, such as PIV, would assist in clarify-
ing this, although one would require a large ensemble of vector
fields to have converged results that are comparable to those
from hot-wire measurements, especially for large lengths. It
is noted that the magnitude of change in conditional velocities
across the TNTI in figure 2 is in good agreement with the pro-
posed scaling of the jump by Chauhan et al. [3], i.e. the deficit
of the conditional streamwise velocity normalized by uτ is O(1).

The conditional profiles for standard deviation of the stream-
wise velocity relative to the conditional mean in figure 2(a) are
plotted in figure 2(b). As expected the fluctuation levels are
much higher in the turbulent region than the non-turbulent re-
gion across both fronts and backs. The steep rise in fluctuation
intensity from the non-turbulent to turbulent region occurs in a
region where the steep change in mean velocity also is found
to occur. These profiles are similar to the fluctuation statis-
tics averaged in the wall-normal direction [3]. Furthermore, we
have normalized the standard deviation of conditional fluctua-
tions with the local skin-friction velocity uτ and find that there
is no apparent Reynolds number trend observed. This implies
that uτ is an appropriate scaling velocity for the fluctuations,
consistent with the conclusions made by Chauhan et al. [3].
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Figure 2. Conditionally averaged profiles across the turbulent/non-
turbulent interface. A detected change from turbulent to non-turbulent
state and vice-versa is at ∆x = 0. Profiles in red, averaged at the fronts;
profiles in blue, averaged at the backs. (a) conditionally averaged ve-
locity relative to the freestream. (b) standard deviation of fluctuations
relative to the conditional averages in (a). Shades of red and blue are
darker with increasing Re.

Probability Distribution of Zone Lengths

In figure 1(c) the length of a turbulent and a non-turbulent seg-
ment of the signal is denoted by `T and `NT, respectively. Pre-
vious observations suggest that both `NT and `T are organized
randomly in the signal and do not favour a particular organi-
zation of occurrence [12]. However, the statistical properties of
`NT and `T are important to understand the organisation of large-
scale structures associated with entrainment and whether the
turbulent or non-turbulent events are associated with the large-
scale motions underneath. Figure 3 plots the probability density
of `T and `NT calculated from the Ũ signal at a wall-normal po-
sition where γ = 0.5 in a boundary layer. It is seen that both tur-
bulent and non-turbulent zones occur at a wide range of scales
and for γ = 0.5 have equivalent distribution; i.e. a characteristic
measure (such as mean) of `T is equal to a similar characteristic
measure of `NT. Intuitively, as one approaches the wall (γ < 0.5)
the length of turbulent zones will become larger and the charac-
teristic length of `T would be larger than that of `NT [10]. Simi-
larly, further out in the boundary layer, the characteristic length
of non-turbulent zones would be larger.

A distinctly noticeable feature in figure 3 is the remarkable
collapse of profiles to exhibit a Reynolds number independent
power-law behaviour of P shown by a solid black line [18]. One
explanation for this behaviour is due to the fractal geometry of
the instantaneous three-dimensional surface characterizing the
turbulent/non-turbulent interface. Within the range of scales
over which the power-law scaling is observed, the geometry
of the TNTI can be considered as self-similar. The power-law
scaling occurs with an overall exponent equal to −4/3 which is
in very good agreement with previously observed values of the
exponent (e.g. [17, 16, 8]). The fractal scaling ceases below an
inner cut-off or when approaching the spatial resolution of the
data. The inner cut-off is of the order of Taylor microscale, λT
and is the scale where profiles deviate from the power-law if the
inner scale ν/uτ is used for normalizing `T and `NT in figure 3
(inner scaled distribution not shown here). The outer cut-off
is approximately δ/4, estimated from probability distributions
plotted in figure 3 which utilizes the outer scale δ for `T and `NT.
Between these limits the data shows power-law scaling over one
order of magnitude of scale-separation. Beyond the outer cut-
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Figure 3. Probability distribution of turbulent (red) and non-turbulent
(blue) zone lengths in outer scaling. Solid black line indicates an expo-
nential distribution given by equation (3).

off TNTI does not have a self-similar behaviour and the overall
geometry of the surface representing the TNTI is dictated by
large-scale features that are O(δ).

We also observe that in outer scaling the profiles for P col-
lapse on to each other and have no Re-dependence even for
zone lengths greater than δ/4. The behaviour of P in this re-
gion is found to be exponential, as first suggested by Corrsin &
Kistler [6]. Using hotwire measurements in the wake of a heated
cylinder LaRue & Libby [14] also showed the exponential dis-
tribution of probability density functions of long zone lengths
and our observations in the boundary layer consistently agree.
The exponential distribution is plotted in figure 3 as the solid
black line and given as

P (l = x/4) = λ · exp(−λx), (3)

where λ is some parameter whose value is established later.
Equation (3) is in very good agreement with the data. The prob-
ability that a zone length l is greater than some length x1/4 is

P [l ≥ x1/4] =
∫

∞

x1

λ · exp(−λx)dx = exp(−λx1). (4)

Now a hotwire signal consists of N(= Ts ·Fs) discrete points. At
a particular wall-normal height where the mean intermittency
factor is γ, the probability that a single point in the signal is in
a turbulent state is γ, while the probability that it is in a non-
turbulent state is 1− γ. The probability that a probe encounters
at least K non-turbulent points before a turbulent state is de-
tected is then

P (n≥ K) = (1− γ)K , (5)

where n is number of points. Substituting 1− γ = exp(−λ),

P (n≥ K) = exp(−λK). (6)

The above discrete probability is the same as expression (4) if
K = bx1c; x1 being a real number and K is the greatest integer



less than x1. Therefore the parameter λ is equal to − ln(1− γ).
It is also known that an exponential distribution has the prop-
erty of being memoryless, i.e. the probability of a particular
event occurring is independent of the prior events that have oc-
curred. For the particular case of intermittent turbulent sig-
nal we can then say that the probability that a probe sees a
turbulent/non-turbulent zone of certain length l is independent
of the zone lengths preceding it. To prove this we consider that
a turbulent/non-turbulent zone of length greater than l1 has just
passed the probe. The conditional probability of seeing a zone
length l ≥ (l1 + l2) of alternate state (l2 is some positive incre-
ment) is then P [l ≥ (l1 + l2)

∣∣ l ≥ l1]. (Note that P in equation
3 is the same for `NT and `T for γ = 0.5).

P [l ≥ (l1 + l2)
∣∣ l ≥ l1] =

P [l ≥ (l1 + l2) ∩ l ≥ l1]
P [l ≥ l1]

(7)

The numerator represents the combined probability of seeing a
zone length greater than l1 + l2 and l2, which is essentially the
probability of seeing a zone length greater than l1 + l2.

∴ P [l ≥ (l1 + l2)
∣∣ l ≥ l1] =

P [l ≥ (l1 + l2)]
P [l ≥ l1]

=
exp

(
−4λ(l1 + l2)

)
exp(−4λl1)

∴ P [l ≥ (l1 + l2)
∣∣ l ≥ l1] = exp(−4λl2) = P [l ≥ l2]

Since the probability on the r.h.s. is independent of l1, any ar-
bitrary choice of l1 can be made for the conditional probability
on the l.h.s. as a zone length preceding l1 + l2. Thus P [l = l2]
is independent of l1.

Finally, substituting l = `/δ and x = 1 in equation (4) gives
P [` ≥ δ/4] = 0.5. This implies that when γ = 0.5, 50% of
the total signal consists of turbulent/non-turbulent zones that are
greater than δ/4 in length.

Conclusions

Intermittency characteristics are examined over a wide range
of Reynolds number with Re exceeding any of the previous
such studies. We find that the conditional statistics exhibit Re-
independent scaling when inner normalization by uτ and ν/uτ

is used as velocity and length scales, respectively. The proba-
bility density function for turbulent/non-turbulent zone lengths
show fractal scaling at intermediate scales. The range of scales
over which fractal behaviour is observed increase with increas-
ing Reynolds number. For large zone lengths (exceeding δ/4)
existence of an exponential distribution is established clearly.
The exponential distribution is indicative of random organisa-
tion of large-scale bulges/valleys in the outer part.
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