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Abstract

Surveys of the skin-friction velocity under a high-Reynolds-
number turbulent boundary layer were conducted to obtain the
imprint generated by large-scale structures in the logarithmic
region. Two spanwise arrays of hot-films, separated in the
streamwise direction, were employed to investigate the evolu-
tion of the large-scale footprint with the emphasis on usagefor
future real-time control. An estimate of the downstream foot-
print, based on the upstream input, is compared directly to the
measurement from the second array. Firstly, Fourier decompo-
sition and proper orthogonal decomposition reveal the spanwise
homogeneity and periodicity. Then, by using Taylor’s hypoth-
esis as a first-principal estimate, the anticipated on/off-control
for targeting high-speed structures is 68.3 % accurate in terms
of timing. When only considering the spanwise modes that re-
main coherent, and their individual convective speeds, theaccu-
racy is improved to 72.7 %. In the final part, we elucidate on the
spanwise inclination and meandering of large-scale structures.
It is shown how inclined structures do not drift in the spanwise
direction in the conditionally averaged results.

Introduction

Past research on high-Reynolds-number turbulent boundary
layers has revealed the existence of large-scale turbulentstruc-
tures in the logarithmic region, consisting of flow regions where
the instantaneous velocity is spatially coherent in the form of
uniform momentum zones, which are either below or above the
mean velocity [4, 13, 8]. The coherence is evidenced by their
significant lifetimes in the streamwise direction (up to 20δ) and
organization in the spanwise and wall-normal direction [13]. An
ongoing effort at the University of Melbourne is to actively con-
trol these large-scale structures. The motive for doing this relies
on the fact that large-scale structures modulate the amplitude of
near-wall velocity fluctuations [9, 12]. Henceforth, if we can
efficiently target and reduce the high-speed structures, it is en-
visioned that near-wall shear-stress fluctuations, and itsmean,
will be reduced.

For non-intrusive, practical purposes, an array of skin-friction
sensors was flush-mounted to the wall and formed our detec-
tion plant. The skin-friction footprint is generated by structures
throughout the entire boundary layer, but, by implementinga
real-time temporal filter, the large-scale footprint is retrieved
(see Hutchinset al. [10] and others). As a first step, feedfor-
ward control is anticipated, and hence, a real-time implementa-
tion of this form of control requires a finite streamwise separa-
tion distance between the location ofdetectionand the location
where subsequent controlaction is executed. This follows from
an accumulation of constraints imposed by real-time filtering,
control decision making, mechanical delays and the physical
inclination of large-scale structures. Since feedforwardcontrol
relies on an estimate of theaction imprint, a suitable estima-
tion procedure, with thedetectionimprint taken as the input,
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has to be embraced for efficient control. In this work, two skin-
friction arrays (positioned at locations of detection and action;
visualized in figure 1) are employed to assess various estima-
tion procedures. Here, we focus on the efficient usage of these
techniques for real-time control, and so, the current work is an
initial step towards implementation of feedforward control in an
efficient manner.

0.57δ 0.071δ

x ′

ϕ(x ′)

x
y

z

detection

x1
=

0

action

x2
=

1.6
4δ
/ x3
=

3.2
7δ

Figure 1. Schematic of two spanwise arrays (x1 & x2 or x1 & x3) of
shear-stress sensors; an actuation array of wall-normal jets is positioned
at x2 during real-time control studies.

Applicable estimation procedures will condense to stochastic
estimation, which has been widely applied in coherent turbu-
lent flows. As a first-principal case, we will explore the esti-
mate from a uniform convection velocity (Taylor’s hypothesis).
Then, first-order stochastic estimation techniques, dubbed Lin-
ear Stochastic Estimation (LSE) [1] are explored by applying
single-time LSE (e.g.Cole and Glauser [6]). Additionally, data
were decomposed in the spanwise direction using Proper Or-
thogonal Decomposition (POD) [11] and Fourier analysis to in-
vestigate the spanwise periodicity of the footprint. Such decom-
positions also allow us to perform an estimate of each individual
mode. Here, a simple single-time estimate is performed and we
refer to Bonnetet al. [5] for a more comprehensive approach
by which low-dimensional estimates can be performed by com-
bining LSE and POD; see also the overview provided by Baars
and Tinney [2].

Experimental Arrangement

Experiments were conducted in the high Reynolds number
boundary layer wind tunnel at the University of Melbourne at
a friction Reynolds number ofReτ = Uτδ/ν = 14,400 (U∞ =
20 m/s); whereδ = 0.367 m is the boundary layer thickness,
Uτ = 0.64 m/s is the friction velocity, andν is the kinematic vis-
cosity. Each spanwise array of shear-stress sensors consisted of
nine flush-mounted Dantec 55R47 glue on type hot-films, with
an equidistant spacing of∆y/δ = 0.071 and a span ofLy/δ =

0.567 (figure 1). The hot-films were operated in CTA mode,
with an overheat ratio of 1.05, and were synchronously acquired
at a rate offs = 5 kHz using AA labs AN 1003 anemometers.
The sensors were calibrated such that the friction velocityin
m/s was obtained [10]. Two streamwise separation distances
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Figure 2. (a) Contour of fluctuating friction velocity atx1, (b) reconstructed field using Fourier modem= 0, 1 & 2. Contour levels correspond to:
Uτ (x1,y,∆x) /

(√
Λστ
)

; whereστ is the standard deviation of the signal andΛ = 1 for (a) andΛ = 0.727 for (b).

of x2− x1 = 1.64δ and x3− x1 = 3.27δ were considered. The
former represents a typical spacing between detection and jet
actuation as encountered during real-time control, since we re-
quire a temporal interval on the order of(x2− x1)/Uc ≈ 43 ms.
The convective speedU+c = 21.9 was found from two-point cor-
relations. After signal acquisition, a 1D Gaussian filter was con-
volved with each signal to retrieve the large-scale fluctuations;
the standard deviation of the filtered field isστ = 0.0507 m/s.
The Gaussian filter of 6σ in length spanned 1.5 fsδ/Uc = 131
samples. In the remainder of this work, wall-imprints are pre-
sented in terms of spatial coordinates. As an example, the
Gaussian-filtered field atx1, denoted asUτ (x1,y, t), is visual-
ized in figure 2a in terms ofUτ (x1,y,∆x), where∆x = −tUc.
Finally, data corresponding toTU∞/δ= 8.6·105 boundary layer
turn-over times were used to obtain converged statistics atlarge
wavelengths.

Spanwise Homogeneity and Periodicity of Footprint

A low-dimensional analysis of the friction velocity field isnow
conducted. The significance of doing this is to allow the varia-
tion in the spanwise direction to be described by a reduced set
of time-dependent coefficients, since one can omit the spatial
modes that possess insignificant amounts of energy, or discard
modes that are incoherent in the streamwise direction. First we
consider a Fourier decomposition at one particular location xi ;
note thatxi is omitted in further expressions for convenience.
The friction velocity fieldUτ (y, t) is decomposed according to

Uτ (y, t) =
4
∑

m=0

cm(t)eimπy/l , (1)

where length 2l = 9/8Ly and cm(t) ∈ C are the Fourier coeffi-
cients. Equation (1) can be recast as a real-valued series, where
real coefficientsc̃m′ (t) ∈ R contribute as even (m′ > 1) and odd
modes (m′ 6 −1); c̃0(t) remains similar and equals the time-
varying spanwise mean. As opposed to Fourier decomposition,
POD [11, 3] does not assume mode-shapesa priori. Generally,
orthogonal spatial modes are deduced directly from an ensem-
ble of coherent data, while time-dependent coefficients charac-
terize the temporal dynamics of each mode. The classical form
of the POD, applied in the spanwise direction results in

Uτ (y, t) =
9
∑

n=1

an(t)φ(n)(y). (2)

The mode-shapesφ(n) (y) are obtained by solving the following
integral eigenvalue problem:

∫

R
(

y,y′
)

φ(n) (y′
)

dy′ = λ(n)φ(n) (y) , (3)

whereR
(

y,y′
)

= 〈Uτ (y, t)Uτ
(

y′, t
)

〉 is the two-point correlation
matrix. POD coefficients are obtained through the mapping

an(t) =
∫

Uτ (y, t)φ(n) (y)dy, (4)

and their variance is equal to the associated eigenvaluesλ(n).
Hence, the total resolved energy (TRE) is given by

Λ =

4
∑

m′=−4

λ(m′) =

9
∑

n=1

λ(n) = 9σ2
τ, (5)

whereλ(m) is the variance of Fourier coefficient c̃m′ (t). The
aforementioned techniques can be implemented in real-time,
provided an initialization is performed to obtain the POD modes
offline (solving equation 3).

Let us now elucidate the modal energy distributions. Pre-
multiplied energy spectra of the mode coefficients are shown
in figure 3a. The area covered by one spectrum is proportional
to the fraction of energy in the corresponding mode. Figure 4
complements this by visualizing the fraction of energyα = λ/Λ
per mode. Before discussing the spectral content it is important
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Figure 3. (a) Pre-multiplied energy spectra of time-varying coeffi-
cientsc̃m′ (t) andan(t). (b) Two-dimensional energy spectrum of stream-
wise/spanwise friction-velocity fluctuations.

to comment on the mode-shapes, which are not shown in this
condensed paper. POD modesn = 1 & 2 resemble a spanwise
variation that is equal to the first odd and even Fourier modes,
m′ = −1 & 1, respectively; they also posses near-identical en-
ergy fractions. Furthermore, POD modesn= 1 & 2 have non-
zero means, which suggests a coherent phase relation between
Fourier modesm′ = 0 & m′ = −1,1; however, this is beyond
the scope of this paper. Nonetheless, the field is homogeneous



in y and a Fourier decomposition is justified. Fourier modes
with higher rankmcomprise smaller spanwise wavelengths and
their discrete values can be deduced from the ordinate of fig-
ure 3b, where the 2D energy spectrum is shown. Evidence of
the expected peak around (λx,λy)/δ = (6,0.7) is there despite
the sparse resolution inλy.

To illustrate the strength of a low-dimensional representation,
the Gaussian filtered field in figure 2a is reconstructed by pre-
serving Fourier modesm= 0, 1 & 2 (figure 2b). Essentially, the
field is filtered iny by discarding the least energetic modes. Ad-
ditionally, the phase angle between odd and even Fourier modes
can be utilized to identify high-speed and low-speed streaks.
The streaks corresponding to modem= 1 are identified on the
graph, which, by visual inspection identify the regions of high
(–) and low (- -) skin-friction velocity reasonably well.
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Figure 4. Energy fractions per mode:α = λ/Λ.

Streamwise Estimation of Footprint

A first logical step in examining the evolution of the footprint
is to consider its convective speedUc. Figure 5 presents the
convective speed (abscissa) obtained from the maximum in the
two-point correlation (ordinate). First, this is performed for
the Gaussian-filtered signals in a one-to-one fashion. Then,
POD coefficients of the same rank are correlated:an(x1, t)
with an(xi , t)|i=2,3, and similarly for the Fourier coefficients:
c̃m′ (x1, t) with c̃m′ (xi , t)|i=2,3. For all cases,Uc is higher for
an increasing separation distance (�→ �), which is simply the
consequence of larger scales remaining more coherent. The
convective speeds are disparate for modes with different span-
wise wavelengths. For example, the convective speed of Fourier
mode m = 2 is ≈ 5% smaller than its equivalent for modes
m= 0 & 1. This implicitly shows the hierarchy of structures
throughout the boundary layer, since wider and longer struc-
tures reside further from the wall, and hence, convect faster.

Since our aim during on/off-control is to exclusively target high-
speed structures, we quantify the similarity between the esti-
mate and direct measured field atx2 as follows. The fraction
of time that the estimated field̂Uτ(x2,y, t) > 0, given the mea-
sured fieldUτ(x2,y, t) > 0, is defined asβ, i.e. in terms of set
theory: (Ûτ > 0)∩ (Uτ > 0); note that in the case of random
firing β = 50 %, whileβ = 100 % for an ideal scenario. Fur-
thermore, during all instances of misfiring, not all skin-friction
events have equal and opposite amplitude compared to the in-
stances of successful targeting. Therefore, the mean of thetar-
geted events, relative to the mean of the positive skin-friction
events atx2, is used to quantify the amplitude of the targeted
events:ζ = [Uτ | Ûτ > 0]/[Uτ | Uτ > 0]. In the remainder we
refer toβ as the ‘timing efficiency’ andζ as the ‘targeting effi-
ciency’.
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Figure 5. Two-point correlation maximaρmax with associated convec-
tive speeds for raw signals, POD- and Fourier-coefficients (both separa-
tion distancesx2− x1 : � & x3− x1 : �).

As a first principal estimate we apply a uniform convection ve-
locity (Taylor’s hypothesis) to the field atx1 (input) to obtain
the wall print (output) atx2. This scenario is case A in table 1.

case U+c [m/s] β [%] ζ [%] Uτ | Uτ > 0
A 21.3 68.3 51.8 0.79
B 21.3 72.6 64.5 0.81
C 21.7/ 21.6/ 20.7 72.7 64.6 0.81

Table 1. Similarity between estimate and direct measured field at down-
stream locationx2.

Next, we only consider Fourier modes that remain coherent over
the streamwise distance considered (see figure 5). The field
at x1 is reconstructed using Fourier modem = 0,1 & 2 and
shifted to locationx2 according to its mean convective speed
(U+c = 21.3). For illustrative purposes, the estimated and mea-
sured field atx2 are shown in figures 6a and 6c, respectively,
alongside their binary maps of targeting instances. The fraction
of overlap of the gray portions of figures 6b and 6d (for all avail-
able data) is equal toβ = 72.6 %; the similarity parameters are
listed in table 1, case B. As a logical consequence of a decrease
in misfiring, the targeting efficiency is increased toζ = 64.5 %.
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Figure 6. (a,c) Visualization of the reconstructed estimated field at lo-
cation x2 (based on input atx1) and measured field atx2, by omitting
streamwise incoherent Fourier modesm= 3 & 4, with alongside (c,d)
the associated binary maps of firing instances in grey.



Finally, the attempt is made to increase the accuracy of the es-
timate in case B by considering the convective speed associated
with each distinct mode. The individual convective speeds are
listed for case C in table 1. It is clear that the improvement in
the estimate is negligible, which can be easily explained. The
difference in convective speeds, and the associated shifts for the
estimate, is relatively small compared to the length of the large-
scale structures, and so, the improvement will only be more sig-
nificant when larger streamwise distances are considered. This
however, comes at the expense of a decrease in coherence. It
is important to realize that a perfect estimate (β = ζ = 100 %)
is practically impossible. First of all, structures dissipate and
have a limited lifetime, and secondly, structures might appear
from outside the domain. Nonetheless, we believe that an over-
all efficiency taken asη = 2/

(

β−1+ ζ−1
)

= 68.4 % (case B or C)
should result in an effective form of control.

Meandering and Spanwise Inclination

In order to investigate the spanwise inclination and drift of
structures we reside to the phase angle of paired Fourier modes,
as was used in figure 2b to identify low- and high-speed streaks.
The footprint atx1 is conditioned on events where the spanwise
inclination angle of Fourier modem= 1 obeys byϕ(x1) > 15◦;
here we take the midpoint of a structure and the result is shown
in figure 7a. Skin-friction fields at downstream locationsx2
and x3 are conditionally averaged using the same condition
ϕ(x1) > 15◦ in order to reveal how the inclined structures ap-
pear downstream (figures 7b and 7c). The inclined structures
are shown to relax downstream since they become less inclined
and less pronounced in amplitude. Furthermore, the structure
remains centered aty= 0, which shows that the inclined struc-
tures do not drift in a preferred spanwise direction, on average.
The implication of this is that corrections for spanwise drift in
the estimate have to be more novel than being based on an in-
stantaneous spanwise inclination of the structure.

−0.3

0

0.3

−0.3

0

0.3

−2 −1 0 1 2
−0.3

0

0.3

(a) 〈Uτ (x1,y,∆x) | ϕ (x1) > 15◦〉

(b) 〈Uτ (x2,y,∆x− x2+ x1) | ϕ (x1) > 15◦〉

(c) 〈Uτ (x3,y,∆x− x3+ x1) | ϕ (x1) > 15◦〉

∆x/δ∆y/δ

Figure 7. (a) Skin-friction velocity footprint atx1 conditioned on span-
wise inclination anglesϕ(x1) > 15◦, and associated conditioned foot-
prints (shifted byU+c = 21.3) at locationx2 (b) andx3 (c); the white
lines indicate a 15◦ spanwise inclination.

Conclusions

Estimates of the time-dependent spanwise skin-friction veloc-
ity footprint under a high-Reynolds-number turbulent boundary
layer were performed. The estimation-input was acquired ata
detectionlocation, where after the estimated field at a down-
stream distance ofx2 − x1 = 1.64 δ was compared with a di-
rect measurement. When only considering the spanwise Fourier
modes being coherent over this distance, the instances of high-
speed events were targeted 72.7 % accurate. An ongoing effort
at the University of Melbourne is to control high-speed large-
scale structures, and so, an array of wall-normal jets will be po-
sitioned at the downstream location to perform controlaction.

More accuratestreamwise evolutioncan be accounted for in
future work using the implementation of multi-time (spectral)
LSE per mode if time-constraints of the real-time control set-up
allow for this. Variation in the spanwise drift, or meandering of
the structures, is more difficult to account for, as it was shown
that on average, spanwise inclined structures do not move inthe
spanwise direction. Henceforth, a possible scheme to account
for spanwise driftis not trivial to implement. Finally, the mode
decomposition generates a wide variety of control strategies that
will be explored.
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