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ABSTRACT
In this paper, the general calculating methods
are given for inlet length, loss of pressure
and correction coefficients of entrance region
for laminar and turbulent flow between two
narallel disks, with the help of momentum
integral equation. The flow quantity, by tak-
ing aeccount of the effect of entrance region,
is also derived. The authors take the follow-
ing as examples: the laminar velocity distri-
bution is f(n)=2n-n? , the turbulente one is
f(n)=nt/7

done some experiments. The laminar theoretical

in boundry layer. The authors have

results agree very well with the author's ex-
periments. The turbulent theoretical result
is checked with "Mohn's (1230)" experiment.
It is proved that the formulae given in this

paper is simple and reliable.
INTRODUCTION

The radial diffusive flow between parallel
disks is very common in hydraulic technology,
for instance, the flow of valve "Oki(1959),
Usava(1958), the flow between slipper plate
and slipper bearing, between block cylinder
and valve plate. Besides these it can ¢ seen
that flow in air micrometer "Nakayama(195%),
Hagiwara(1952)". And it is possible to use for
the studies on the vaneless diffuser "Brown
(1947)", axial bearings "Show (1949), Fuller
(1947)", spherical bearings "Allen(1953)".

Radial diffuser in one form or another have
been investigated experimentally by "Brow(1947)
Allen(1953), Comolet(1952), Mohn(1930),Pai-
vanas(1955), Welanetz(1956), Savaqge(1944),
Woolard(1954), Oki(1958), Makayama(195%4),Hagi-
wara(1952), Wang,Z 0(1982), Liu, Z B(1984)".
Some analyses are for laminar viscous flow in
which the acceleration terms in the equations
of motion are assumed to be small in compari-
sion to the viscous terms, and are therefore
negleted. The hydraulic method is also used

to treat the flow as one-dimensional and

¥It is one of the problems that surported by
the fund of Chinese Academy of Science.
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utilize a modified Bernoulli equation which
includes an additional term accounting for the
pressure drop due to friction by means of
friction factor or coefficient. Pressure dis-
tributions calculated by "Woolard(1954)"using
the hydraulic method for laminar and turbulente
flow in radial diffuser with parallel disks,
are compared with an experiments obtained by
"Mohn(1930) "for the flow of water in a dou-
ble-disk valve element. Deep studies have been
done for the air micrometer by "Hagiwara(l1952)
and Makayama(1954)". But they just studied on
laminar flow in both theory and experiment.

In this paper, the authors pay more attention
to the studies of laminar and turbulente flow
in entrance region. They are derived that the
general equations which inlet length satisfies,
while the entrance region effect is accounted,
and the general expression of coefficients of
entrance region effect. The authors have done
a lot of experiments. The laminar theoretical
results agree quite well with the authors ex-
periments. The turbulent experiments happen
the flow contr action ™ut the author's tur-
bulent results agree better than "Woolard's
(1952)" turbulent result comparision with

"Mohn's(1930)" experiment.

NOMENCLATURE
Ce correction coefficient of flow
quantity of the entrance region
effect
h —— gap between disks
P, —— total pressure at inner radius r,

P> P1s D23 P static pressure at r,ri,ra,

r
e
n flow quantity
r radial direction coordinate
r; inner radius of disk
rs outer radius of disk
Ta inlet length
Re—— correction Reynolds number at ra
(umlh/u ).(h/ry; )=0h/(27r} v )
u ——— radial velocity component
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u, velocity of potential flow outer
boundry layer

un mean velocity at r (Q/2nrh)

Uy mean velocily at ri (2/2unh)

U —— nondimensional velocity of potential
flow outer boundry layer (uolum)

U, nondimensional velocity of potential
flow at r;, .(uo/um)

z axial direction coordinate

Y ——— correction coefficient of pressure

drop of the entrance region effect

6§ —— boundry layer thickness
§,—— displacement thickness

momentum thickness

by;—— nondimensional displacement thick-
ness (28,/h)

nondimensional momentum thickness

(262 /h)

A —— coefficient of total pressure head

AE——T— coefficient of partial pressure head

Apﬁ——— coefficient of pressure drop

motion viscocity

£ —— nondimensional local radius (r/ri)

nondimensional inlet length (re/rl)

p —— density

shearing stress at the wall

theoretical pressure

0
NN

Fig 1: Tllustration of radial diffusive flow
between parallel disks.
1 FOUNDATION OF THEORY

We assume that:
(1) The fluid is incompressible (p=const,):
The flow is steady and constant physical
characteristic.

(2) The inlet is smooth. The radius of air
chamber is significant larger than the gap
(h/ri<< 1).

(3) It is formed in the entrance region that
boundry layer is axisymmetrical about the
The flow is turbulence

plane of z=h/2. {average-

time turbulence) inner boundry layer, and is
potential flow outer boundry layer.

(4) At the end of entrance region the full
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filled time-average turbulence is formed. And
its velocity distribution is power law (Actua-
lly it is logarithmic law).

By reference "Wang, Z0(1982)", we know that
the momentum integral equation at the wall in

entrance region is as below:

=
-E§3+—l— EE":1(2(32+51)+ 62:_—!? (1.1}
dr ug, dr r pu
wheree 61=f3 ()= Eo) dz, &, =Ig—§;(l-—%;)dz
From the flow continuity, we get
1 T
U =y (1.2)
mjy
1 ; z
Yhere A:IO(I-f)dn g === (1.3)
§

Thus, from the flow continuity, again, we get

u l/um=r/r1:E

m
So U:Ulumllum=EU1 (1.4)
By (1.2), (1.4), we get

U=1/(1-Aa) (1.5

If it is assumed that the general expression
of velocity distribution in boundry layer is
u/u =f(n)=n" (1.6)
Besides satisfing the general boundry condi-
tions,f(n) should satisfy the additional
condition at the end of entrance region,i.e.
A+1,

diffusive one.

when the flow is full filled homogeneous

The shearing stress at the wall which is
respectively with power law, see "Hermann

Schlichiting (1979)", are surposed

v .m
Tw:U(n) (_U—gk) pu;

(17D
Where m:lfz ——— resistance exponent
B{(n) characteristic number
concerned with Rg, when
n=—t— ~—— , B(n)=0.0395---0.0115.

When the flow is laminar, the shearing stress
at the wall is defined by Newton shearing

stress law:

af, v
Tw:(*gﬁ)o(—aﬁg) Qu; (1.8)

If we assume m:l,B(n):(—%%)u?in egnt. (1. 7,1t
will be changed in the form of eqn.(1.8),s0 eqn
(1.7) is sultahle for both laminar and turbu-
lent flow.The power law of velocity distribu-
tion is for turbulence.But the laminar veloci-
ty distribution can be 2nd-power law,3rd-power
law and sine law.
2 TURBULENT INLET LEHGTH AND CORRECTION
COEFFICIENTS OF EMTRAMCE REGIOM EFFECT

(1)Turbulent Inlet Length

The eqn.(l.1) can also be written in dimension-

less form as



21
St G g -Bihr LM (B (2.0)
)
From (1.7), we obtain
21 m+ 1
"(Ery2 Bln)y-m yomogm (hymei (5 )
2 h m ri
pug Re
Where A;=AA Ay=(B-A)A (2:3)
Here Bzfé{l—fz)dn (2.4)

Substitute (2.2),(2.3),
eqn.(2.1), we gain

n‘I'I'I

. (8-A+ABA) A"

B(n) (1-AA)((1-Aa)"g™+l,

(2.4) and (1.5) into

=

db 2m+l

3]

m m+l)
2m+lB(n)

RN
e

(2.5)
& can be calculated from the above eqn.(2.5).

(2)

The Coefficient of Loss of Pressure.

The partial coefficient of loss of pressure

is defined as

)
\g=-g3¢/ (toul) (2.6)

when E;Ee s ASL,
By eqn.(1.1), (1.2), (1.5), (2,2). we gain,
m+1 h,m-1
" :2 H(n)(;T) m-2_ 2 __l_
S R (1s2n)(1-A)2 &3
(2T

The coefficient of total pressure head along

the pipe is defined as

O (2.8)
E ba2
tpug
When £<€_ , by Bernoulli equation, we get
-1 2
Po-P=2pu_ {299
Substitue eqn. (2.9) to (2.8)
A=L/(E2(1-An)?) (2.8

The coefficient of loss of pressure, when £<Ee

AD=AE:1/(EZ(I~AA)2) (2.
When E:Ee, A=l
) 2 2

Apevll(ﬁe(l-A) ) (z2.12)

Yhen £>Ee , loss of pressure can be written as

m+2 h \m-1
2 B(n)(*?T) 1

(1+2n)(1-A)2

A=
P Rem(l—A)Z_m(m—l)

(Em_l~ 2—1)+

l -
£2

1

£

}+Ape (2.13)

(3) The Correction Coefficient of Flow Quantity

of Entrance Region Effect.

‘Then E<Ee , by eqn. (2.11), we obtain
B TN (VTS L
P _P_cC . ipu (2.14)
o @ RZ(l—A)z-m(l—m) A
m 2-m
Where CB_ R;+£I-A) (lnﬂ}l E-(l+m)
= 2
2 A(n)(h/ry) (1-AA7) (2.15)
When g;ge
m 2= =
e o E T LR - " emye! ™ an )
e 2m+2 hym-1 {—;+*——}
& S(n)(;l (1+2n) £2 g2

(2.16)
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The mean velocity at inner radius can he got
from eqn.(2.14).Thus the flow quantity, which

taking the account of entrance recion effect,

can be got

—A}]Z_m(l—m) h#-m
Zm-l 5(n) Em»lum

Qz{{ﬂ(l
C
e

Ap
l-m
ol

L/ (2=m) (3.17)

COMPARISION OF CALCULATIONG
EXAMPLES WITH EXPERIMENTS

(1) Laminar Entrance Region

It is assumed that the velocity distribution in

boundry layer is similar in the entrance recion.

Thus —%—=f(n):2n-n2 (313
)
By eqn.{1.3) and (2.4), we get
A=1/3 . B=7(1S5; ‘Bla)=f'(0)=2
And if we assume m=1, substitute A, B,8(n) in
eqn.(2.5), we gain
%% L Zg o DLEHTA) E :3.2)

(3-8){(3-0)E*+7/80<Re
It is the equation which we derived
Z n(lress)".
nition of AE ,Ap

A%}

in reference
"Wang, From eqn(1.8) and the defi-
the general expression of Ap

can be written as

24 1

6
)\p— P‘»e lnE+T 2+"r (3.3)
where Y&{Aﬁg——ﬁw ? X ﬁu 1ng (3.4)
(3-A)2 e

When E;Ee ¥ Y:Ye.

The coefficient of second term in eqn.(3.3)is
£ 1
The error is caused by the different
The coefficient would be 6/5

differente with the coefficient in
(1982 )"

uses of methods.

"Wang,

if momentum integral equation is used, and

54/35 if energy integral is used. The difference
of coefficient in eqn.(3.%) can be proved in
8y egn.(3.3), we get

24
n Ing

e
6
5

the same way.
(3.5)

-p= i 2
pO p,Ce .zpum

4£~+Y)/(—%iln£)
g2 Te

W = 5
When £<g_, c. I+( (3.6)

Yhen

£2€

e "17Ye
Yhile & . is constant,
of R

Ce is only the function
, is the bigger Ce is."hen

, the effect of Ce for

The larger ?e
E<E,
flow quantity should not be ignored.

E}ﬁe, Ceil ; when

Using the experimental element, see Fig.l,

(r;=21 nm, r,=80 mm), the present authors have
done a lot of experiment in air at various cap.
The results are shown in Fig.2. 1t
is can be seen that the theoretical values

agree very

well with experiments.

r o 10 (mm)

h=1imm

8=10m¥h

Fig.2.Comparision of ﬂhWith Author's Experiment.

-20 =2
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(2) Lntrance Reglon of Turbulence

For the entrance region of turbulence, we
assume that velocity distribution in boundry
layer is as below power law. As an example,we
take n=1/7 ;B(pn)=0:0232. From: {(1.3):(2:4),. we
have A=1/8, 8=2/9. By eqn.(2.5), we qget
& A%(7+2A)E
®(1-8/8)((1-8/8) g5 v ur _Fasr )

, (3.8)
Y'e use Rung-Kutta method to calculate eqn.(3.8)

dg _
—ga=0-2517R

L
0

and obtain inlet length Ee which varies with
In Fig.5,
A at different Re.

Qe, see Fig.4. we shown E varies with

Fig 4. 1Inlet Length varies with R
£ [Re=i00D0
Re=5_000'
‘Re:sz;solu’
3l
2
al . "
W e A
io.2lo.qf0.8{0. 8 I 1 4
Fig 5. £ varies with A
Yhen £<E ', by eqgn: (2.11),
= 1
P gz(1-a/8)® ki
i ‘) 64 1 (3.10)
“hen E_Ee ' Ap‘_ﬁ§_ » =f%
Yhen B>,
/
_0.1859(ra/h)* 0 1 1,641 128 1  (3.11)
AP_ Ré {Esxagsjl 3 €2+4 l'gz
e e e e
When E<€e » by eqmn,(Z2.15),
3
¢l 5.3792/nP . (35
(r1/h)?"*e%""%(1-4/8)7
“hen E;Ee , by egn.(2.16),
) |
a9y
Cez(ég)gﬁu+4.1839ﬁp E] {l—: ? . i1 }-1
e (g SR S E;
3y eqn.(2.17), (3.13)
- hiSapY g2 1/ 7
Q-?.??BY{*Eg——U——E?f} (3.14)

From the expression of Ce, we can see that Ce
of turbulence is only the function of Re while
E=const. Sut it differ from laminar flow he-

cause when £>>ge ’ CF does not limit to 1.

Thus the conclusion will be got that Ce effects

a lol Tor flow quantlily of Lurbulence whenever
£ is,i.e. the effect of entrance region should
not be ignored.That is the reason why we study
the entrance region.

In order to compare with "Woolard's (1930)"the-
oretical value,we derive loss of pressure from
eqn.(3.11).The authors theoretical turbulent

result is shown in that

the latter agree with "Mohn's (1930)"experiment

Fig.6.It can be seen

better than the former.
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Fig. 6: Comparision of Pressure Distribution
of the Author ¥ith Mohn's experiment
and Yoolard's Pressure Distribution.
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