9th AUSTRALASIAN
FLUID MECHANICS CONFERENCE
AUCKLAND, 8-12 DECEMBER 1986

Expansions and Matrix Expressions of 3-D Compressihle
Turbulent Flow Egs. in Non-Orthogonal Curvilinear Coordinates
and the Method of Numerical Calcuation

WANG ZHONG-QI, FENG GUO-TAl and KANG SHUN

Harbin Institute of Technology, Harbin, People’s Republic of China

ABSTRACT

"The time-averaged turbulent flow equa-
tiomsin vector form are established in this
paper. They can be expressed by matrices and
expanded in non-orthogonal curvilinear coor-
dinate system as well. In the end ;,the method
of solving the 3-D turbulent flow field by
Dumerical difference is discussed briefly.

NOMENCLUTURE

E-Inner energy. T-Absolute temperature

f-Viscous force. V-Absolute velocity
g-Metric tensor

and its

or its components.
x¥-Curvilinear coordinate
components. curvess
I -Christoffel symbol.

P-Gas density.

N-Stress tensor.
P-Pressure.

I. INTRODUCTION

In recent years because of the rapid
development of the computer technology & the
continuous improvement of the calculation
methods, it 15 now possible to solve the 3-D
viscous flow equations numerically. However
it is very difficult to solve the viscous
flow field with a
geometry by finite difference method because
one should deal with the "broken" mesh on the
boundary.

boundary of complex

In order to solve the 3%-D viscous flow
field with the boundary of complex geometry
in non-orthogonal curvilinear coordinate,the
matrix expression of wviscous terms in the

basic aerodvnamic
12

equations are given in the
references . However these matrix
not be used for calculation

the

expressions could
of turbulent flow
basic aerodynamic
terms should be handled with the theory of

time-averaging. For this purpose the studies

Therefore
equations with viscous

directly.

represented in this paper can be considered
as continuation of the works carried out in

above-mentioned references.
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I. TIME-AVERAGED BASIC AERODYNAMIC
EQUATIONS IN VECTOR FORM

In order to make the procedure of time-
averaging of the turbulent flow basic equa-
tions clear and easy, the time-averaged equa-
tions in vector form are first derived.

1. Equation of continuity

Time-averaged equation of cont inuity can
be writtenin following form

% ey
StV (V+ o'V =0

In order to simplify the above

(2-1)
L0k [4]
equation, we analyse the condition of M,«1
then p?@ «l . Therefore P=p . Under this

condition, Eg. (2-1) can be simplified as
dp —=
< tveeV)=0 (2-2)
2. Momentum equation
After being time-averaged, momentum

equation
p(g‘:) +V+ (6VV) +pI) = pm + pf (2-3)
e @VV+p) pm+ o - 22V
et TV - ot (2-4)

The time-averaged momentum equation in vector
form is given by (because M,«1)

L(oé_v’_+v- (VU + 7Dy =pm +y - (T-pVV)  (2-5)
t
where o
v-IL=p
(2-6)

3. Energy equation
Under the condition of adiabatic flow

energy equation is
9(pE)
ot

After being time-averaged, Eq. (2-7) becomes
+v e (PEV +pV)=pm-V+v. (k¢ T) +v - (I[- V)

e (pEV+BV) =pm « V4 7+ (kyT) + v« (IT - V)(2=7)

ot
ey 7 o S, S == —coy @ Loealo

—‘% —p e (pEV + Ep'V' + Vo E +pEV + PV (2-8)

Since M,«l1 , the equation is simplified into

d(pE)
(2-9)

s +ye(p EV+PV) =pmeViys (kyT)

+y e (M- V+y - AV -V GEV +p'V)
The above-mentioned time-averaged

equations can be easily expanded in various

coordinate system

OI. EXPANSIONS OF THE TIME-AVERAGED
BASIC AERODYNAMIC EQUATIONS IN VECTOR FORM



Because non-orthogonal curvilinear
coordinate system is used for solving the
flow fields with complex boundary, we will

expand the time-aweraged equations in this
coordinate system, (the bar over all fluctuat-

ed terms in equations is dropped for ease of
prescription).
1« Equations of continuity
(2-2) can be written as

2, LOEN (3-1)
2. Momentum equation
The second term V- (pVV) on the left-hand
side of Eq. (2-3) can be expanded as

1 o+ 8g" 3l
c W) =[S ALEEn)  L 98, T (3-2)
Using this equation and neglecting the mass

force, Eg.(2-5) can be expanded into

A(pug) e,,+|' 1 dh/s;""pv.v,) 1 ogV
ot dx T2 ox

= pv,u,]e’

axu [\/ T S VM L=V B P T

1 ar
+—§— di’ (IL,r = pyju, )]BB (3-5)
This is the time-averaged expansion of momen-
tum eaquation. where Ilxs and Tl» are expressed
_ duy | ov, w2 1 (g v 2
by Ilr, (dx,. + b Zv,l',,) '3‘11-7—;- T (3-4)
3.Energy equation
Neglecting the mass force the main diffi-
culty to expand the energy equation lies in
expanding the term of work done by viscous
stress, i.,e.v-(II-V),Its expansion is
=1 B Ilypvie™)
VeIl V) =-= .. r
-V Vg oxh (3-5)
Thus, the expansion of energy equation in non-
orthogonal curvilinear coordinates is
E =
%ABE). ---1_{?";&/5 (PEV" + p*)3}
1 ] 4
T dﬂ(wsg’u%) Vg{dtfvwg (TLygv?
o 1 77978 a
+10;, M} ‘—/?—{Fws GEVE TV} (3.6
Egqs. (3-1), (3-3) and(3-6) constitute the
time-averaged basic equations of turbulent
flow. With the addition of
an . equation of state the turbulent flow
fields can be solved by using these five
equations connected with "zero model" of

turbulence.

iV. MATRIX EXPRESSION OF THE TIME-
AVERAGED BASIC AERODYNAMIC EQUATIONS

From Egs. (3-3) and (3-6) we can see
that the number of the terms in these equa-
tions are too large. This makes it difficult
to design the calculation program.
overcome *+his problem,a number of matrix
operator are introduced and defined. Thus,
the basic equations are expressed in matrix
form, so that the calculation program library
of computer can be used for simplify ing the

computation
e B

_( a g
=\t e da) (4-1)

viv', v vM)7Ty V =(uy, Uiy Uy)T

(4=2)
_ g gt g'® 811 81z Bis
G=|g* g g | AE= 821 B2z Baa
g3t gt g% B31 Baz Bas
L (4-3)
Glﬂ = Oxf G
Ox =(Caars1s Cacxizs Caaxsa)T (4-4)
(sum for e ) (4-5)
Qu=ccnuu|u Caavyzs C“”")T ("""6)

(sum for a )
C.nyp(B=1,2,3) are the elements laid on
the diagonal of matrix C,y,
represented by

. where C,y, is

~

Ch30=Gyp Il
sl (4-7)
where
o, I, M,
II= [nu nu nu (#—8)

HSI n!l Has

Coas, (B=1,2,3) are the élements laid on the
diagonal of matrix C,; , which is given by

Cusp=Gy VVT (4-9)
Using Egs. (4=1) ~ (4-9), the equation of
continuity, the momentum equation and the

energy equation can be expressed in matrix
form respectively by
9o 1 —_— ~
+-=_ DT /gpV =0
ot g (4-10)
apV) S
_a‘f_+7;(Dr‘/BpGVVT)T+—%—Q =-Dp

+—-7{DT CVEGI™- o7} L (0,-p0,) (4-11)

d(pE) 1 r = ~ ~ y - —
= +—\/?D e (pEV+PVJ———-‘/.ED (+/ g GkDT)

+ L pr o Ry + 0V
Vg ~ ~

IEDT T GET + 2T (4-12)

The components of II in Egs. (4-11) and
(4-12) are expressed by Eq. (3-4).

In order to use the implicit difference
scheme for computing, it is best that  does
not appear in the matrix expressions.
For this reason, let

Bpr = ﬁ!_ Pl ed 23 9uy

ox’ x| g zvzrs r

(4-13)
then
B=(DV)T+DVI - (VDTG - (VDY GT+ (VD) G(4=14)
and ’iet - - - -

Qr =(Coars1s CouFsas Coaria)T

(4-15)

(sum for « )
where C,.ry5(B=1=1,2,3) are the elements located
at the diagonal of matrix Cris, which is expres-
sed by CF!5=GUB
Using Egs. (4-1) and (4-15) the second
term on the right-hand side of Eg. (2-5) can

be expressed in matrix form by

1 — 2 {d 2B
v o ll= O .G B 5 g B o o8 VoA T (116)




and V- (II-V) in energy equation (2-9) can be
expressed in matrix form by

vedte V)= Lo fu/gGVD VI +uy g G DV V)

3 A, ~
e R
(=173
Egqs. (4-10) - (4-12) represent the

expansions of the time-averaged turbulent
flow equations in matrix form in non-ortho-
gonal curvilinear coordinate system which we
expected,

V. SIMPLIFICATION OF THE EXPANSIONS OF
THE TIME-AVERAGED BASIC EQUATIONS

The method of iteratively
boundary layer-inviscid

calculating
flow is often used
for solving viscous flow field with high
Reynolds number.Therefore,under this condition
the time-averaged equations mentioned above
should be simplified.

The simplified conditions given in Refsfl)
andl2} are used in this paper.

In non-orthogonal curvilinear coordinate
takes the direction of a quasi-
take the other directions
and metric

system «x'
streamline and x% **
The order of magnitude of «!, v
tensor are considered to be 0(1),that of

tobe 0(8) , and that of
viscous coefficient p to be ¢* _Besides,
the unsteady and fluctuation terms in the
inertial term of basic equations are consider-
ed not to be neglected. Therefore they have the
same order of magnitude as the pressure term,
convection term and: viscous term of laminar
flow . According to the simplifying condition

xt, x9, v?, ©°

mentioned above ,the order of magnitude of
matrix operator D and velocity matrix v are

given respectively by
2

|| ° vl !
2] 1 [
palgm b E v Pl e
9 A v? <]
ox? [¢]
If we let
0 Mo K
S 1 ox1 1
Daysy =| ox% [~ " d |3 Day =| 0 |~ o
P 1 5
l ox? ] J 0
ot 1: 0 0
Vay=| 0 |~ 0 |3 Veor=| v* |~ ¢
0 0 v é
then ywe obtain

v+ Vay + Vi

(5-1)

Using Eqs (5-1) the basic aerodynamic
equations can be expanded into the expressions
with more terms which have the different order

of magnitute. The simplified equations w?ll be
obtained by analysing the order of magnitude

D=Dq)y +Dayn s

of each term and neglecting the terms have
less order of magnitute than the others
1. Equation of continuity
Using Eq. (5-1), Eg. (4-10) becomes
on

1 = =~ 1 _» =
Cd DV gpViy+- —_Ddje Visy =0
30 et N e o, DU /) v gpVin) (5-2)

It will be shown that the expansion of Eg.
(5-2) is the same as that of Eq. (4=10). From
this result it can be concluded that even if
the non-orthogonal coordinates are adopted,
the equation of continuity used for boundary
layes can not be simplified.

2, Momentum equation

In order to get 2 simplified momentum
equation,we:analyse the order of magnitude
of each term, that is, unsteady term ,convec-
tion term. pressure term,viscous term and
fluctuation term respectively,in Eg. (4-11)

1) Unsteady term

Becausev=:§; ; and using Eg. (5-1)the

unsteady term’Becomes
o(pV)

[} =
SO S Vv ~1
5 3 (PG Vay )

2)First convection term
Using eq. (5-1) and V=GV first convec-
tion term of Eq. (4-11) can be written as

Sl Fp e T T Py P ~ i
(D’\/spGVK ) =[D(1>\/ngu; Vs c;] (5-14)
T — e T 2
+[Dumn/gﬂVm;Vu>G]
3) Second convection term

We have
Q,=(Q1s Quu, Q;.,}T=(Cnu}1: Cuu!zg Cu..!::"r
and Gsy 1
Gip= |Gy |~| 1/0
Gy 1/d
After neglecting the terms which have the
order of magnitude of 0(é) or 0(é*)

one obtains

(5-3)

Comuit 1/a
Q.=|Couusx |~ 1/0*
Cnul: 1/'52

4) Pressare gradient term
It is well known from Eq. (5-13) that
the order of magnitude of Dp is O (1) in

direction x1,and 1/¢

in directions x2 and x2

5) Laminar .iscous terms
From Ref. 131 we can know g 1/ thus
#Q%”‘(G,I,I)T Hence, Eq.(4-16) becomes

v.-I= —1—[ DJ,’&)M/?EBT]T
Vg

- —% Dayayn ‘71‘?13(1/51 Vg Vm—ul

6) Fluctuation terms

In cunsideration that the order of
magnitude of each component of V' is same, we
will only analyse the order of magnitude of
operator D.

It follows from the analyses mcntioned
above that uynder the simplified condition given
in this paper the order of magnitude of simp-
lified momentum equation is 0(1) in drection



xland O( 1/6 ) in dircction. x2 and x3 .
Since the components of the metric tensor
are variable in non-orthogonal curvilinear
coordinates, the terms of pressure gradient
in the directions x2 and x3
neglected even if the boundary layer is thin.

3. Energy equation

The procedure of analysing the order of
magnitude of energy equation (4-12) is similar
to that of momentum equation. The order of

can not be

magnitude of each term in energy equation is
also maitained in O(1). The terms [ and

p’v? represented the rate of work done by
fluctuation stress and static pressure re-
spectively are neglected but the term Dl/sy pEV
in the expression of DQ;E4; of energy equation
is maitained .

V. METHOD OF NUMERICAL DIFFERENCE

In order to perform the numerical calcula-
tion effectively for the expressions with
matrix form, an difference operator matrix is
set up in this paper by using the method of
numerical differentiation.

Let q denote a scalar function. Utilizing
the formula of three-pcint differentiation,
the difference expressions of the first and

second derivations of q at the arbitrary

point B are given by
"0
(_@?\:_)’s =bp-1p-1 + Dpdy + byagany (6-1)
2
;g 8= Co-1dp-1+ Cp2p+ Cpripan (6-2)

If A is a 3-D array, then its differenti-
ation can be represented by DA. The difference
operator matrix at point p (i, j,k.) can be

defined by 4, as 4,=4_,+4,+4,,

Bii | b, by
where A= bi-r ] A= bl 3 A= Dj+l

by_y by besy
The expression of DAT ig AAT=(A_ +A,+A AT

When one wants to calculate the basic
equations expressed by matrix form using a
kind of numerical difference scheme, it is
only required to substitute A, for D. If G
in Eq. (6-2) are substituted for b, , One
obtains a difference operator matrix of second
derivatives.

SUMMARY

1« The time-averaged turbulent flow equa-
tionsin tensor form are established. They are
expressed by matricas, which are expanded in
non-orthogonal curvilinear coordinates.

2. The equations mentioned above are sim-
plified under the condition of larger Reynolds
number.

3.In order to design the calculation
program easly by using the matrix form, a
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numerical difference operator of matrix is
introduced.

4. The method of solving the 3%-D turbu-
lent flow field by numerical defference is
discussed briefly.
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