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ABSTRACT

Viscous jets are not usually observed to separate from
a sharp edge in the manner expected theoretically. In
the present paper the separation of a creeping jet
emerging from a tube with a rounded exit is considered.
As a separation criterion, in the absence of surface
tension, we propose that the traction normal to the
nozzle surface drops to zero at the separation point.
Boundary-element calculations then show a behaviour
that agrees with experimental data and with previous
finite-element computations. They also permit the
Michael condition to be observed at separation, so
that the discrepancy between finite-element calcula-
tions and theory is removed.

THE SEPARATION PROBLEM

In many processes a liquid stream leaves a conduit and
generates a free surface; a change from the no-slip
boundary condition to the free-surface flow occurs at
some point. Two types of separation are shown in

Fig. 1. 1In case (a) a calculation by Michael (1958)
shows that the separation angle (Fig. la) should be
exactly 180° (a = 0), and that the viscous stresses at
the separation point vary like d”7, where d is the dis-
tance from the separation point A. Experimentally and
computationally separation does not always occur as at
Fig. 1(a) (Tanner 1985). Another possible model for
separation is shown at Fig. 1(b) and this is explored
in the present paper; here separation takes place at
the unknown point A.
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Fig. 1: Singular Points in Flow. (a) Flow at a sharp,
well-defined separation point, (b) General

separation point.

Early studies on separation were made by Nickell et al
(1974) and Bush and Tanner (1983), who gave finite-
element and boundary-element solutions respectively to
the basic problem of a creeping jet of fluid exiting

from a long tube. All of these numerical solutions
and experimental data show that at a '"sharp-edged"
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tube exit, the initial angle (@) of the free jet sur-
face is at some small (approximately 12 degrees) fin-
ite angle to the tube centreline. 1In Fig. 2 we show
finite-element and boundary-element creeping flow cal-
culations and the experimental data of Batchelor and
Horsfall (1971) in which the Reynolds number (Re) was
about 1078, plus our own data with Re < 107%. At mod-
erate (1-10) Re the results are essentially the same
(Gear et al, 1983), so we believe that the Reynolds
number is not an essential parameter. Similarly, small
surface tension effects do not change the separation
angle much and, hence, inertia and surface tension are
both ignored in the present study.
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Fig.2: Comparison of finite-element computed jet shape

( ) with our own experiments (X ) and those
of Batchelor and Horsfall (Q). 1In all cases
Re < 10_3, and surface tension parameter
anO/n2 < 10-°. The initial separation angle

o is between 9 and 14° for the experiments, and
is about 12° for the computations.

The theoretical result of Michael (1958) for creeping
flow separation at a sharp edge gives the result g =
which is at variance with experiment and computation.
Here we try to reconcile theory, experiment and compu-
tation for creeping flow. In view of the stress singu-
larity at the separation point, it is tempting to relax
either the Newtonian constitutive equation or the no-
slip boundary condition. Rejection of Newtonian fluid
physics is a last resort, and we shall retain the New-
tonian fluid assumption and the no-slip boundary con-
dition; Silliman and Scriven (1980) have shown that
relaxing the no-slip condition still yields a finite
separation angle. Our present hypothesis assumes that
every exit is not perfectly sharp, but has a finite
radius. Jean and Pritchard (1980) show photographs of
separation from the rounded exit to a plane channel,
and it is clear that the rounding affects the down-—
stream surface shape. In this paper we numerically in-
vestigate the effect of roundiﬁg the tube exit on the
jet shape.
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Fig. 3 shows the basic geometry. Let the tube
radius be Ry and the exit rounding radius be r. The
final swelled radius is Rf, and the swelling ratio yx
is Rf/Ry. We suppose that separation takes place at
an unknown point 4, which can be specified by the
separation angle 8 (Fig. 3). From dimensional argu-—
ments, in creeping flow with no surface tension or
gravity, we find

¥ = Rg/Rg = x(r/Ro,8). (1)
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Fig. 3: TInitial jet profile and discretization of the
boundary for r/Rg = 0.2 and 8 = 45°. ( + in-
dicates the end points of elements.) Gener—
ally the arc A-B contained four elements
graded as shown in the enlarged sketch.

We now need to consider the stresses in the fluid near
the separation point A. Just downstream of 4 (Fig. 3),
both the normal (tn) and the tangential (tg) compon--
ents of the traction vector are zero, and the velocity
normal to the free surface (vy) is zero. Further,
once separation has occurred, we shall suppose that no
reattachment to the surface occurs. Just upstream of
A we could also demand that vp is zero and that t, or
tg could be zero, thereby giving several possible
criteria for separation. There is no difficulty with
vn; 1it, and also the tangential speed vg, must be
zero upstream of A if we adopt the no-slip assumptiocn.
The situation with ty and tg is not so clear, and will
be explored. One expects intuitively that a compress-
ive normal stress is needed to keep the jet stuck to
the wall, and when the normal stress is tensile, there
is an expectation that separation will occur. There-
fore we propose as a separation criterion that ty is
zero just upstream of A; the shear stress at point A
is singular according to the Michael theory, and hence
it is difficult to believe that tg is zero at this
point which would be an alternative criterion. We now
turn to the numerical investigation.

METHOD OF ATTACK AND RESULTS

Our main interest is to predict the final jet profile
and find the separation conditions. The boundary con-
ditions of the flow change from no-slip to zero trac-—
tion at the exit, and this leads to rapid changes of
velocity and stress in the fluid nearby. Since the
final solution depends largely on the representation
of the flow near the exit, a fine grid is required
throughout the region for domain-type solutions. The
use of fine grids will make the problem a large one in
terms of computing time and space. With boundary-
element methods, we can refine the surface element
spacing without much eplarging the computational prob-
lem. Therefore the boundary-element method is ideal
for this type of problem and will be used (Bush and
Tanner, 1983).

Since the point of attachment of the free surface to
the nozzle exit boundary is unknown prior to solution,
we used a method of trial and error. A number of flows
with different assumed angles of separation g were
analysed for r/Ro = 0.01, 0.1, 0.2, and 0.5 using a
boundary-element program. Details of the formulation
and the performance of the program can be found in an
earlier report (Tanner, 1985). 1In each flow the fluid
boundary was divided into 56 elements. Figure 3 shows
a typical initial geometry used.

Calculations were made at zerc Reynolds number for axi-
symmetric jets. Figure 4 shows the tangential and
normal stresses on the last fixed element of the fluid
at the exit boundary at different prescribed separa-
tion angles ¢ for r/R, = 0.2. The corresponding graphs
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Fig. 4: Dimensionless stresses on the last fixed

elements at exit at different angles of
separation: Tangential @ ; Normal O . Note
the pesitive directions are as in sketch. The
stresses are normalized by the factor nw/Rg,

where w is the mean velocity in the upstream
tube. Here r/R, = 0.2 in this case.

for r/Ry, = 0.01, 0.1, 0.5 are very similar to that for
r/Ry = 0.2; therefore they are not shown here. Of
the separation conditions mentioned above, the shear
stress criterion is unimportant in this analysis; the
shear stress all along the surface is never zero (Fig.
4). Recall that the plots are for the last fixed
element on the exit boundary. The tangential velocity
of the fluid near the point of separation but just
downstream of it is not zero. The tangential traction
at the point of separation jumps due to a singularity
at A, in a similar way to the Michael analysis. (In
our computations the stresses can reach high values,
with appropriate mesh refining, but cannot be singular
at the separation point.) There is no way of choosing
A so that the tangential stress is zero just upstream
of A (Fig. 4). For this reason we will discard the
alternative separation condition given above, and fur-
ther consider only the normal traction condition.

The angles (8:) at which the normal stresses on the
last wetted element on the exit boundary fall to zero
for varjous radius raties (r/R,) are given in Table I.
The free surface was not found to penetrate into the
nozzle exit boundary anywhere, so that there was no
reattachment once separation had occurred. This is in
agreement with our earlier postulate. Therefore,
according to our normal traction separation criterion,
we conclude that the values given in Table I are the



TABLE I. Computed separation angles and jet swelling

for various radii of rounded exits.

Separation angle

Radius ratio 8¢ Final jet swelling
r/Rq (degrees) X
0 - 1.126
0.01 11.6 1.128
0.1 12.0 1.132
.2 12.7 1.138
0.5 14.0 1.153
approximate separation angles (6.; degrees). Notice

that these angles do not vary much although the geo-
metry of the exit varies from almost sharp-edged
(r/Rg = 0.01) to obviously rounded (r/Rg = 0.5). The
radius ratio r/Ry has little effect on the separation
angle,

Figure 5(a) shows the final jet profiles at various
rounded exits. Figure 5(b) shows the enlarged jet
shapes near the exit boundaries. The final jet expan-
sions are also shown in Table I.

DISCUSSION

Experimental results of Batchelor and Horsfall (1971)
showed that for a Newtonian free jet of Re = 10”2 and
surface tension parameter poR_/n? < 105, the angle of
separation of the flow from a '"sharp-edged" exit was
in the range 9-14 degrees to the centreline (Fig. 2).
The radius ratio r/Ry of a typical "sharp-edged" exit
for experimental work is in the order of 0.0l or less.
Our computed angle of separation as r/Rg + O is about
11.6 degrees. This agrees well with the experimental
angles of Fig. 2, which show a 9-14 degree angle of
separation. The Michael theory would demand that the
initial departure from the solid wall be tangential.
As far as we can see (Fig. 5(b)), this is so; the
angle apparent in experiments hence appears to he
due to the rounded exit actually present in any real
jet. Thus, the general conclusion is that the observa-
tiens, computations, and the Michael theory may be
reconciled by assuming a very small rounding of the
tube exit. It does not explain why the nominally
sharp-edged computation does not conform to the Michael
condition. In this case the flow far from the edge
presumably dominates the jet shape to such an extent
that in a computation with a nominally sharp edge, no
notice is taken of the Michael condition, and the com-
putation simply ignores it. This is, perhaps a for-
tunate outcome in terms of computer effort in the
simulation of real jets.

For the prediction of swelling, Table I shows that the
nominally sharp edge (Tanner 1985) and the exit with a
radius ratio r/Rp of 0.0l give nearly the same results
for swelling (1.128 - 1.126) and for jet shapes.
Therefore it will not usually be necessary to model
the edge as carefully as we have done here. Finally,
the vanishing of the stress of traction normal to the
surface appears to be a useful separation criterion,
reminiscent of the peeling of a layer of tape from a
surface, for very viscous fluids.

While much more remains to be done, we have shown that
it is now feasible to model numerically a realistic
separation in highly viscous fluids, thus making some
progress towards reconciling theory, computation and
experiment.
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(a) Computed jet shape for various exit radius

ratios. r/Rs = 0.5; @ /R, = 0.2}

X T/Bg =013 & 1fRg=10.013 B r/R, = 0.
Origin of z is at B, Fig. 3. (b) Computed jet
shape near exit boundary: O r/Rgy = 0.5;

® r/R, = 0.2; X t/Ry = 0.1; r/Ry = 0.01

B r/Ry, = 0. Origin of z is at B, Fig. 3.
Dashed curve is shape of solid surface for
/Ry, = 0.5. The separation is nearly tangen-
tial here.
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NOMENCLATURE

d distance from separation point

E radius of tube lip

Ro tube radius

Rf final jet radius

Re Reynolds number, 2pwRg/n

tp,tg normal and tangential traction vector components,
respectively

vn velocity normal to free streamline

w mean velocity in tube

X radial coordinate

axial coordinate

™

Greek Symbols

surface tension coefficient
swelling ratio Rg/Rg

o separated jet surface-angle to centreline (Fig.2)
n viscosity

8,8c separation, ecritical separation angle

P density

a

X
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