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ABSTRACT

A three-dimensional spectral method is developed for the so-
lution to the incompressible Navier-Stokes equations in an un-
bounded domain. The spectral method relies on divergence-free
basis functions as proposed by Leonard (1981). The basis func-
tions are formed using vector spherical harmonics and Jacobi
polynomials together with a mapping in the radial direction.

An axisymmetric code was written and is verified using an ex-
act solution of the Stokes equations. Preliminary results for
the evolution of a vortex ring according to the Navier-Stokes
equations are presented.

INTRODUCTION

The time-dependent, incompressible Navier-Stokes equations
are solved in an infinite domain with disturbances near the
origin which decay at infinity. In particular, the vortex ring is
studied. This work is motivated on several levels.

The vortex ring is a classical flow problem which has been stud-
ied extensively as an inviscid flow. The effect of viscosity on the
motion of a ring and on the interaction of two rings is not well
understood quantitatively. In addition, the effect of viscosity
on the stability is not known. Insights into these questions are
of interest in themselves and may have useful application to
inviscid “vortex methods”.

The full simulation of a vortex ring is of interest in the quest to
understand and model turbulence. The numerical simulation
of complex, viscous flow fields is an active area of turbulence
research. This type of work has been stimulated partly by
the observation of organized, large-eddy motions in turbulent
shear flows and also by the availability of a new generation of
powerful scientific computers. Such computations can elucidate
flow mechanisms that are extremely difficult or impossible to
study experimentally and can provide a primary source of data
for generating “empirical” turbulence models.

Vortex rings are a good candidate for such studies. They are
representative of an important class of flows which are produced
by a time-dependent point force (Cantwell, 1981). A delta-
function forcing, for example, produces a vortex ring. The
approach outlined in this paper could be extended to other
members of this class, produced by more complex forcings.

Because the Reynolds number is limited by the size of the small-
est scale of the flow which can be resolved, it is desirable to use
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a numerical approach which is highly accurate for a given num-
ber of degrees of freedom. Spectral methods are known to have
exponential convergence with respect to the number of degrees
of freedom. The objective, therefore, is to develop an efficient
spectral method applicable to vortex ring calculations in an
unbounded domain.

When applying spectral methods to differential equations, one
represents the dependent variables in terms of a linear combi-
nation of known, smooth, global functions referred to as ‘basis
functions’. Global basis functions are appropriate for modeling
incompressible flow because the propagation speed of distur-
bances is infinite. With such an expansion, the governing par-
tial differential equations can be reduced to a set of ordinary
differential equations for the unknown time-dependent coeffi-
cients. This is accomplished by a weighted-residual method.
The truncated expansion is substituted into the partial differ-
ential equation, multiplied by chosen weight or ‘test’ functions,
and integrated over the relevant domain. A spectral method
requires, therefore, a set of basis functions and a set of test
functions appropriate to a given problem.

One class of spectral methods, introduced by Leonard (1981),
uses divergence-free basis functions. This has the advantage
that the pressure is eliminated as an explicit variable and that
the three degrees of freedom from the components of velocity
are reduced to two. This approach has been applied to a circu-
lar pipe (Leonard & Wray, 1982), straight and curved channels
(Moser, Moin, & Leonard, 1983) and boundary layers (Spalart,
1986). The disadvantage is that the divergence-free basis func-
tions satisfying the boundary conditions must be found analyt-
ically, which can be difficult.

In the next section, the weighted-residual method is reviewed,
and the development of the divergence-free basis functions and
test functions appropriate for the present class of flows is pre-
sented. The method and code are tested using an exact solution
to the axisymmetric Stokes equations. These results and pre-
liminary studies of the evolution of an axisymmetric vortex ring
are presented in the Results section.

DEVELOPMENT OF THE SPECTRAL METHOD

Starting with the governing equations, the weighted-residual
method is illustrated. Next, the basis functions for the vor-
tex ring are discussed and finally, they are combined with the
weighted-residual method to give the spectral equations.

Weighted-Residual Method

The governing equations are momentum,
u+u-Vu=-Vp+ vViu,

and continuity,

(2)

vV :a=40.
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Applying the identity,

u-Vu=V(@/2)—uxw (3)
to Eqn. (1) gives

u+Ve—rvViu=uxw ; (4)

where & = p 4 u?/2. Here u is the velocity, w is the vorticity,
p is the kinematic pressure, and v is the kinematic viscosity.

In a spectral method, the momentum equation is satisfied in
the weighted-residual sense. 'This is accomplished by taking
the inner product of Eqn. (4) with specified test functions, ¥; .
The result is,

<'l.lg,\I’,' >4+ <V, ¥ >— <sz'l.1,'1’j > (5)
=<uXxw¥ >

where < a,b > denotes the integral of the dot product of two
vectors, a and b, over the volume.

Using the product rule and Green’s Theorem, the second term
in Eqn. (5) can be written as

< V8,1, >=j;¢(w,- -n)dS—/;Q(V-‘Il,- )av.  (6)

In this form, it is clear that this term is zero when ¥; is defined
such that (¥, -n) — 0 (fast enough) asr — oo and V-¥; =0.
For the problem under study, ® decays like 1/r® as r — oo
(Cantwell, 1986). With these conditions satisfied, the pressure
“drops out”. The resulting equation is,

<u,¥; >—-<vVia,¥; >=<uxw,¥ > (7}

In the present approach, the test functions and basis functions
will be the same.

Divergence-free basis functions

Finding an appropriate set of divergence-free basis functions is
an art: many conditions must be satisfied. The basis functions
must not only be complete for a given set of endpoint condi-
tions and divergence-free, they should also lead to an efficient
numerical method. One measure of the numerical efficiency is
the sparseness of the matrices resulting from the linear terms
(on the left side of Eqn. 7). Ideally, the basis functions would
be orthogonal in all three spatial coordinates. In practice, this
is probably impossible to achieve simply by a judicious choice
of functions.

The coordinates will dictate the types of functions which are
appropriate for the boundary conditions of a given problem.
For the vortex ring in an unbounded domain, we chose spheri-
cal polar coordinates. An advantage of this choice is that only
one direction is infinite. As described below, special care must
be taken in an infinite domain. In addition, exact axisymmet-
ric flows can be easily represented. This will be important for
future studies of azimuthal instabilities. Finally, the availabil-
ity of vector spherical harmonics (VSH, defined in Appendix)
enables a complete, divergence-free set of basis functions to
be defined analytically. Convenient differential relations of the
VSH (Hill, 1953) are used to show that two of the directions
provide orthogonality in the linear terms. A disadvantage of the
spherical coordinate system is that in two of the three direc-
tions one cannot use Fast Fourier Transforms in transforming
between real and wave-number space.

Since the vector spherical harmonics, X¢m , Vem , and Wy ,
form a complete set on a sphere (Blatt & Weisskopf, 1952),
an arbitrary, unsteady, three-dimensional vector field can be
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represented by
u(r,B,qS,t) = ?;:{Flzm(r!t) sz(ﬂ, é) (S)
+ 15, (": t]ng (9, ¢’) + Fa,.. (r, t) Wem (9: ¢) ]’ J

The radial functions, Fy,, , Fy, , and Fs, , are chosen ac-
cording to the constraints of a given flow, as described below.
In numerical solutions, the series is truncated with (1 < £< L)
and (0 € m < £) where the limit, L, is set according to the
complexity of the flow field.

By substituting Eqn. (8) into Eqn. (2) one sees that a divergence-
free field can be represented using only two functions:

u(r,0,6,t) = 3 {Fim(r,t) Xem(9, 9) (9)

Lm

+V X [F(r,t) Xen(60,4) ]}

The curl of F};, X4 , defined in the Appendix, gives the expres-
sions for Fy, and Fj,_ as a function of F}, . This procedure
amounts to using a vector potential.

Spectral Equations

In this section, the working equations are derived, with the
radial functions left arbitrary.

The radial dependence and time dependence are separated by

N
Fin(r,t) = Ea;m(t] fra(r) (10)

and .
Fp(r,t) = Z_%aim(t) faalr) . (11)

Because the test functions and the basis functions are the same,
the test functions are simply

W=ti= it Xeom (12)

and ¥t =V x (fi, Xewm ). (13)

These expressions are combined with the velocity expansion
(Eqn. 9) and substituted into the weighted-residual equation
(Egn. 7). Using orthogonality of the VSH (Eqn. 26) and the
Laplacian of VSH (Eqns. 32 - 34) it can be shown that the polar
and azimuthal directions are orthogonal in the time-derivative
and viscous terms. As a result, for each set of wave numbers
! and m, there are two sets of N ordinary differential equa-
tions with dependent variables a ., and af,.. . These working
equations are,

AL dt;% ~uB, G =< u X w, fo, Xin > (14)
+ dagm + ot + 3
An‘n T -~ VBI'I'I'I Copm =< UX w,V x (fn't xtm ) > (15)
(-]
where A7, =L 5. Fois Prdrs; (16)
- Gl —_ _ 2
= [ Ll Mmerdr (7
oo
Ao = [ [Fone Jrue + o Fope | 72dr 5 (18)
o0
B:"n :_/0 [Lf"'l(fzuz )f3"i¢ (19)

‘t‘Ll—l(fS,.g )fsn'l ] rdr 5

where the operator L, is defined in the Appendix, and Xj, is
the complex conjugate of Xym -



Radial Functions

The radial functions, f,(r) and f,(r) , are chosen so that
they

form a complete set,

satisfy boundary conditions,

generate a smooth velocity field near
coordinate singularities,

satisfy parity requirements,

e and result in a numerically efficient method.

°

By choosing a set of polynomials which are solutions to a Sturm-
Louiville problem with certain endpoint conditions, complete-
ness is guaranteed (Gottlieb & Orzag, 1977). When vorticity
is initially confined to a finite volume, the velocity decays in
the far-field like 1/r® and the vorticity decays exponentially
(Batchelor, 1967).

For the solution to be smooth through the origin of the coor-
dinates, certain limiting behaviors are required for each of the
components (7 , 6,and ¢ ) of the velocity and vorticity as
r — 0. These smoothness constraints are

v~ ot wo wt
#i0 1 51 p
B |rt g1 g1 gt
‘} pt pt-1 -1 gt

This can be shown by writing a Taylor expansion in Cartesian
coordinates and taking the transforms with respect to # and ¢.
The parity requirements are governed by the spherical Eoordi—
nate system. That is, 7 and gfb are of odd parity, and ¢ is of
even parity.

Numerical efficiency is more complicated to assess. Efficiency
depends on the number of terms required to represent a typical
solution, and on the number of operations required to advance
the solution one time step.

To approximate a function in a semi-infinite domain directly,
Laguerre polynomials are appropriate. This set of polynomi-
als, however, requires many more terms to resolve a function
of given complexity than Chebychev or Legendre polynomials
(Gottlieb and Orzag, 1977). It is, therefore, better to map the
infinite domain to a finite one and use a another set of polyno-
mials.

The radial domain, 0 < r < oo, is mapped to the finite domain,
0 < ¢ <1, by the “modified” algebraic mapping:

* . r{ £g(£)

T 1-¢£9(¢)
The term “modified” refers to the function g(¢) .

where g(¢) =1-esin(ér). (20)

The mapping parameter, ry, is found such that (risy — ri)/r;
(where r; is the i** collocation point) is 2 minimum at a spec-
ified radius, R (typically, R is the radius of the ring). The
parameter, a, controls the degree of clustering. Therefore, a
and R are chosen for a particular vorticity distribution and ry
is then determined.

The mapping function is shown in figure 1 with clustering about
r/R = 1 for several values of a. The collocation points, given
by solid circles, are the zeros of the Jacobi polynomials of the
next higher order.
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Figure 1. Modified algebraic mapping function.
This mapping, together with the radial functions,
fn_t e (1 _ E)shfdzcn(f), (21)
:& = (1 = 'E)Elﬂcn(‘f)’ (22)

satisfies the above constraints. The set of Jacobi polynomials
is given by G, as defined in Abramowitz and Stegun (1972,
p. T74) withp=¢g=1.

With these functions, the matrices given by Eqn. 16 through
Eqn. 19 are full. Trading bandwidth for a more general map-
ping allows the study of thinner rings.

RESULTS

The axisymmetric terms of the Navier-Stokes equations were
programmed using the method described above. With the con-
vective terms omitted, the solution is compared to an analytical
solution of a Stokes vortex ring. Next, preliminary results are
shown of axisymmetric rings evolving according to the Navier-
Stokes equations. The starting condition is a laminar ring with
Gaussian vorticity distribution through the core.

The axisymmetric form of the equations is obtained by letting
m = 0 and no swirl is imposed by setting the ¢ component of
velocity equal to 0. As a result, the a;, set of coefficients is zero
and the two working equations (Egns. 14 and 15) reduce to one
(Egn. 15). In the physical domain, the solution is completely
specified in the ¢ = 0 plane as shown in figure 2.

/— ¢=0 plane

f=m/2 —N'v

Figure 2. Vortex ring and spherical polar coordinates.
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To compute the flow field, one must specify an initial velocity
field or equivalently, a vorticity field. Once the initial condi-
tion is chosen, it is represented with a truncated set of basis
functions. The next step is to integrate the spectral equations
in time to obtain a new solution.

Because the exact solution to the Stokes vortex ring is known
for all time, this is a useful test case to validate the method
and much of the code. The Stokes solution for a vortex ring,
derived by Allen (1984), is given by:

/e

Toqoz Snfr (wt) 52 gmr" 1)

w(r,8,t) = (23)
Here I is the impulse and p is the fluid density. The polar
dependence (sin @) is the same as that for the £ = 1 basis func-
tion. As a result, the coefficients, a}t,, for £ # 1 should be zero.
This was indeed found to be the case. It is therefore sufficient to
compare the computed solution to the exact solution along the
radius at # = 7/2. Figure 3 shows the Stokes solution at three
times. For an expansion of 10 terms in n, and 15 collocation
points, the starting condition, at £ = 1, is so well resolved that
it is indistinguishable from the exact solution. The integrated
solution is then compared to the exact solution at later times,
t = 1.5 and t = 2. The agreement is excellent. The mapping
parameters for this case are a =0 and R = 3.

-
a

=m/2

P

LEGEND

~
o
inilial condition at t=1.0
exact curve at t=10

°
°

_integraled selution at t=1.5
4“-—%- exacl curve at t=1.5

I/p

nos

inlegrated solution at =2.0
exacl curve at =20

006

15 collocation points
time step = 0.01
10 terms
a=0
RB=3

004

000 o002

Figure 3. Radial dependence of Stokes vortex ring: com-
parison of the exact solution to the spectral
solution.

The next case studied is a laminar vortex ring. The governing
parameters are the initial Reynolds number, defined by T',/v,
where T', is the circulation, and v is the kinematic viscosity,
and the ratio of ring radius to core radius, r./R. For the cases
described below, the Reynolds number is 7780, and r./R is
0.25,0.35 and 0.45,

The initial vorticity distribution through the core of the ring is
that of a two-dimensional viscous vortex (Batchelor, 1967) :

N

e—o’/[dwt]
4yt

= (24)
where the radial distance, o, is measured from the center of the
core. The core radius is defined as the distance from the center

of the core to the point with peak velocity.

With the vorticity distribution specified, the coefficients, a,
(with N = 10 and L = 15), are found, giving the approximate
starting condition, shown in figure 4.
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Figure 4. Axisymmetric initial condition for spectral cal-
culations.

This initial solution is advanced in time with Eqn. (15), treat-
ing the nonlinear term pseudo-spectrally. That is, the solution
is transformed from wave space to real space, the cross prod-
uct performed, and the result transformed back to wave space.
Explicit, Adams-Bashforth differencing is applied to the con-
vective term, and implicit, Crank-Nicolson differencing is used
for the viscous term. Both are second order accurate. The di-
mensionless time, , is given by T, ¢/R?. Figure 5 shows the
solution at a time, £, which is 0.526 later than the solution in
figure 4 with a time step, Af, of 0.0146.

vorticity
contour levels
we /T,
-0.50000

o<

0.50

§.50000

0.25

0,00

-1.000 -0.7§

Figure 5. Navier-Stokes calculation of an evolving vortex
ring.

The centroid, using the definition recommended by Saffman
(1970), is at z/R equal to 0.1235. This corresponds to a prop-
agation velocity, U = 4nRU/T,, of 2.95.

Saffman (1970) derived an expression for the propagation speed
of a thin viscous vortex, valid for small values of r./R. With a
Gaussian distribution of vorticity:

ﬁ=log( N

Vvt

With r./R = 0.25, Eqn. (25) gives a {7 of 3.02, in good agree-
ment with the present calculation.

(25)

) — 0.558.

Two additional cases were run with a core-to-ring radius ratio
of 0.35 and 0.45. A comparison of the computed propagation
speed with Saffman’s thin ring propagation speed is shown in
figure 6.
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Figure 6. Propagation speed vs. core-to-ring radius ra-
. tio: comparison of Navier-Stokes calculations
to thin ring theory.

The results are reasonable and the trends are as one would ex-
pect. Because of convection, the thicker rings are propagating
more slowly than the thin ring analysis predicts. For larger
r./ R, the difference is greater between thin ring theory and the
calculation.

The core deformation appears to be reasonable in relation to
experimental observations (Maxworthy, 1972). Vorticity is be-
ginning to be left behind the ring as though it is likely to be
shed at a later time.

CONCLUSIONS

A three-dimensional method for calculating flows in an infinite
domain with disturbances near the origin has been developed
and tested in the axisymmetric case.

Calculations of axisymmetric rings show that the method works.
The computed solution of the linearized equations is in excel-
lent agreement with the analytic Stokes solution. With the
convective terms added, Navier-Stokes solutions of propagat-
ing vortex rings are obtained. With a core-to-ring radius ratio
of 0.25, the computed propagation speed compares well with
the propagation velocity of a thin viscous vortex predicted by
Saffman. Further studies and refinement of the code are re-
quired to make more detailed observations, such as shedding of
vorticity into the wake. The observer will move with the ring,
for example, so that the ring remains in the area of highest
numerical resolution.

In future work, the third dimension will be included and the
azimuthal instabilities of the viscous vortex ring will be studied.

APPENDIX: Vector Spherical Harmonics

2x ¥
f f Cym D}y 5ind d dp = 6cp bee Smm! (26)
0 0
where C, D are X¢m s Vim , and Wy .
tye
= ¥ — Yy
¥ =7 { (2e+1) ¢
- 1 ay; }
i (27)
{ue+1)(ze+ 1200

mY ™ }
[(£+1)(2t+1)]'"* sind

+<}{
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m
—mY/

Xem = 8 {—— 28
‘ {[z(e+1)[1/’ sma} (28)
-1 ay,"
+ (o B
[e(e+1))* 28
¢ 1/2
W =7 {(‘2“_—1) Yy } (29)
a 1 ay,"
+10 { £ }
[e(2e+ 1)]/* 88
A imY™
+ —_—
? {[2(2£+1)]"’ sina}
where Y™ is the scalar spherical harmonic (Hill, 1953).
V- [F(r)Xem] =0 (30)
i N i by
=il —— STt 3
VX[F{T)X,I_M] ;(2.8-}'1) [d!’ rF]Vg,,, ( 1)
(e+1\P[dF  t+1
— + ——F| Wi
+ (2.2 + 1) r * r g
VAF(r)Ven | = Lesa (F)Vem (32)
VHF(r)Xem | = Le(F)Xtm (33)
VIF()Wem | = Les(F)Wem (34)
20 HL+1)
and Lt == E—‘ = a—r = !": (35)
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