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ABSTRACT

Water waves generated by a moving pressure band is
solved by a Boundary Element Technique. The free
surface condition involves the use of complete
unsteady Bernoulli Equation. As the computation
grids are Lagrangian waves of large amplitudes and
slopes can be computed. Numerical flow
visualizations are presented to  show the
sequential development of streamline patterns for
transient waves generated by the pressure band and
the interaction of these waves with stepped
channel floor. The effects of nonlinearity are
illustrated by mode of unsteady flow and the
smooth transition from low to high Froude number,

I INTRODUCTION

The linearized problem for waves
travelling disturbance have been solved long ago
and essential works were reported by Lamb (1945).
A consistent second order analysis was given by
Tuck (19653) in which he solved for the steady
state water wave generated by a submerged
cylinder., The analysis was carried out using
series expansion of the free surface equation so
that the application of free surface boundary
condition was transferred from the surface of the
wave to the calm free surface. This imposed a
restriction on the solutions and was shown by the
appearance of singularities in the resulting
stream function.

generated by a

Mathematical solutions of large amplitude wave are
restricted to cases where the wave profiles and
wall boundaries are relatively simple. One
example is the solution for solitary wave. For
more complex problems one has to seek solution
from numerical technique. This is not to imply
that the numerical solution of fully nonlinear
wave is without difficulties of its own: The large
movements of the free surface boundary make the
traditional Finite Element and Finite Difference
techniques very difficult to applied. There are
numerical instabilities which are caused by the
absence of wviscosity. The stability criterion
associated with the absence of diffusion term has
been illustrated by Hirt (1944, On the other
hand the free surface itself is also the source of
numerical instability. As the result, some forms
of smoothing technique have been employed to
maintain stability.

The solution of nonlinear waves generated by a
submerged cylinder was carried out numerically by
Haussling and Coleman (197%). The technique used
was a finite difference scheme incorporating the
boundary-fitted technique to handle large
deformation of free surface. Their results showed
that the wave amplitude of nonlinear waves were
significantly higher than that of the linear wave
and consequently higher 1ift and drag than the
linear theory were predicted.
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The differences between linear and nonlinear waves
should also be examined with respect to the Froude
number of the source. There are three
characteristic lengths associated with this type
of flow: the depth of the channel, the depth of
immersion and the length of the body. A more
simple system in which the depth of immersion is
absence is that of a moving pressure band.

Consider the the pressure band travels at
number equals to . In the frame work of the
linearized theory the wave generated by the
pressure can be decomposed by way of a Fourier
Series. Thus one sees the dispersion for waves of
short wave length. The 1long wave will have a
velocity approximately equal to the square root of
gravity times the depth of the channel. 1In other
words these long waves travel with the pressure

Froude

band. The result is the building up of the wave
amplitude ahead of the pressure band until the
wave amplitudes grow beyond the wvalidity of

linearized wave theory.

The analysis of the above waves system in the
frame work of nonlinear wave theory will bring in
the effect of amplitude. That is the velocity of
the wave is now dependent on the amplitude and the
shape of the wave. It can no longer be analysed
by Fourier Series., 1t seems that nonlinear wave
of finite amplitude has to be studied in reference
of the =source in which the waves are generated.
It is envisage that nonlinear wave theory will
give further information on the build-up of wave
amplitudes ahead of the pressure band when the

pressure is traveled at Froude number around
uni ty.
The aim of this paper is to carry out numericai

experimantations on the waves generated by a
moving pressure band for different Froude numbers.
The change of Froude number is brought about by a
different velocity of the pressure band and by the
variation of depth in an irregular channel.

2 GOVERNING EQUATIONS AND NUMERICAL TECHNIQUE

Consider the generation of plane water waves in a
channel of finite depth by a pressure distribution
in the atmosphere. The variables discussed here
are nondimensionalized so that the gravity, the
depth of the flow channel and the density of water
are made unities.

2.1 Equation of Motions

This potential flow problem can be expressed by
the wvalues of the enclosing boundaries. In this
problem the free surface § and the channel floor B
enclosed the domain of the fluid flow. In this
formation the free surface is represented by a
vortex sheet and doublet distribution are -placed
on the channel floor. The expression for the
velocity induced by the presence of wvortex cheet
and doublet distribution is given by a boundary
integral equation where the integrations are
carried out along the free surface and the channel
floor.
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where
S represents the 1line integration along the
free surface and
B represents the line integration along the

wall boundary.

u and v are the horizontal and wvertical

components of the velocity vector;

z is the complex coordinates;

the subscript 1 is associate with the dummy
variables in the integration;

Yl is the wvorticity on the sheet;

Bl is  the doublet density on the rigid
boundary;

sl is the length measured along the line of

integration;

z1 is the coordinates of a point on the sheet;

S represents the 1line integration along the
free surface and
B represents the line integration along the

wall boundary.

Let uj + ivj be the wvelocity on the wetted side of
these boundaries. According to Plemej’s formulae,
this velocity is defined by:
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on the wall boundary

There there two type of boundary conditons: On the
free surface the velocity component tangential to
the free surface inclined at angle 6 is expressed
as the derivative of the wvelocity potential ¢ with
respect to the arc length of the free surface,
that is:
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The no flow free slip boundary condition is
applied to the channel floor. This implies that

the normal velocity component is zero, thus:

B = ujsine; - vjcos 0; ias
The dynamics of the free surface flow is governed
by the unstea. Bernoulli equation. Apply this to
a fluid particle on the free surface the Lagragian
Bernoulli Equation is given by:

[ d;
dt
(5

where pix,t) is the given pressure distribution.

] = Bluf4v2) - - pixt)

2,2 Outline of Solution

The principal variables are the velocity potential
¢, the vorticity ¥, the doublet strength B and the
coordinates of the free surface z (= x + im.
Equations ¢2), (3}, (4> and (5) are a set of
simul taneous equations which will be solved
numerically as an initial wvalue problem. The
solution begins by the time integration of
equation (5) to give the values of ¢ in the next
time step. The new positions of fluid markers on
the free surface are also computed according to
their wvelocities. This advance of time will be
followed by the evaluation of ¥ and K. These
variables are related with the velocity vector as
expressed in equation (2) and is therefore
implicit in equations (D) and (4). The
discretization of the integral equation in (2) and
its substitution into equations ¢3) and (4 will
result in a set of linear equations which can be
readily solved. Detail of the technique is given
by Soh (1983).

3 SOME OBSERVATIONS OF COMPUTED RESULTS.

3.1 Format for Fiqures.
All figures are plotted with the abscissa on the
channel flocor. The calm free surface will a line

one unit above the abscissa. The lccations for
the pressure distributions are represented by
shaded  areas above the free <curface. For

convenient of presentation, the horizontal scales

are exaggerated.

3.2 Stationary Pressure Band

For a stationary pressure band which has a s=mooth
pressure distribution, the hydrostatics solution
for the depression of the free surface is given
by,

y=1-pbo. s
However for a stepped pressure distribution, the
steep pressure gradient at the ends of the
pressure band will cause instability on the free
surface in these regions. Consider a pressure
band of 18 unit width and has a constant pressure
distribution of unity is suddenly imposted on the
otherwise calm free surface. The movements of the
free surface is most severe at the edge of the

pressure band where the pressure gradient is the
highest. Thus the depression started at the edge
of the pressure band. Concurrently, wave crests

have been generated just outside of the depression
and beginning to travel away from the pressure
band. At 4 unit of- time, a= shown in figure 1 the
free surface in these regions has become wvertical.
Subsequently in 5 unit of time the inctability of
the flow has caused the wall of water to fall into



Figure 1

the cavity. This process will generate eddies and
form entrapped bubbles in water. The flow is
highly turbulent even in the present ideal
environment where the effect of the air jet which
usually associate with this type of pressure
distribution has been neglected. The continue
overturning of the free surface near the edges of

the pressure band has prevented the depressed free
curface from obtaining a hydrostatics profile as
indicated in equation (4). It is to note that the
streamline patterns do not indicate the directions
of the flow in the same way as the case of a
steady state. For example the point of inflexion
found at (9.8, 8.9 and (21.8, 8.9 are not
stagnation points.

3.3 Moving Pressure Band.

The effect of Froude number can be demonstrated by
allowing the pressure band to move along the free
surface at different velocity, Consider a
pressure band of 5 unit width and has a moderate
pressure coefficient of 0.2 moving toward the
right. The velocity corresponds to Froude number
equal to one, as shown in figure 2, A transient
bow wave which has an amplitude of 8.59 unit and
travel ahead of the pressure at Froude number
equals to 1.21, that is 8.21 relative to the
pressure band, For a correspond solitary wave
with this amplitude it velocity has to be 1.29.
One would expect that this bow wave will
eventually achieve the form and wvelocity of a
solitary wave. A transient stern wave of much
smaller amplitude of 8.85 is found moving in the
opposite direction.

This above phenomenon occures for the velocity of
the pressure band below wunity, For higher
velocity, it takes longer for the transient bow
wave to develop. For example it occurs at about
48.8 wunit time for a velocity of one unit, this
has increases to 66,8 and 80.8 for the wvelocities
of 1.1 and 1.2 respectively. So far no transient
bow wave has been computed at the velocity of 1.5.
At this wvelocity the maximum crest height is
maintained at a low value of 8.14., It is possible
that an asymptote has been reached and that the
transient bow wave will no longer exist.
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The height of the maximum wave crest for wvarious
velocities are tabulated in table 1. The digits
appear for velocities 1.3 and 1.4 are vetical
ruled to indicate that they are the wvalues
obtained so far and have not reached steady state
values.

Table 1 Maximum wave height.
Velocity | Amplitude
8.5 p.e2
1.8 .59
1.1 8,70
12 B.78
13 8. 3‘[
1.4 B2
1.5 B 14

3.4 Stepped Channel Floor.

The change of Froude number could be brought about
by the change in channel depth. Thus a pressure
band travelling with Froude number of 8.5 will
reach 1.8 when the depth of the channel floor is

raised so as to reduce the depth by half. The
transition from Froude number of 8.5 to 1.8
happens very quickly as shown in figure 3. The

mode of separation of the leading crest when the
pressure bend is over the raised channel floor is
identical to that of figure 2. It seems that the
flow is heavily dependent on the local depth as
the casze of one dimensional channel flow. The
influence of the trailing waves, to the free
surface under the pressure band is at most
secondary. This is reflected in the Boundary
Integral Equation that, for any distance over the
Tength of the depth of the channel, the influence

of waves surrounding a point in question is
inversely proportional to the square of the
distance.

As the pressure band moves away from the raised

channel floor, the increase in the depth of water
causes the wave to accelerate. This results in
the generation of a transient bow wave moving
faster than the pressure band.

4 SOME REMARKS ON NUMERICAL EXPERIMENTATION.

The unsteady flow pattern for the case of
stationary pressure band has demonstrated that
steady state condition in nonlinear wave may not
exist. This is also to be expected for moving
pressure band which has a pressure coefficient
greater than one, The transient characteristic of
the waves generated by a moving pressure band of
moderate  pressure coefficient of @.2 has a
dominant transient bow wave that move ahead of the
pressure. The time scale for this transient to
develop its proportional to the velocity of the
pressure band. The asymptot in  which this
transient bow wave cease to exist is found to be
about the velocity of 1.5. More computing effort
is needed to establish a more accurate limit.

Although the technique is capable to compute for
the overturning of waves, as in the case of
stationary pressure band, no overturning of wave
are observed from the moving pressure bands. The
transition of Froude number from low to high
values is relatively =mooth. This is a feature
that cannot be visualized from linear theory. For
the case  of stepped channel, the wave
characteristics is mainly influenced by the Tlocal
depth of the channel. The net effect by the
raised platform is the generation of a transient
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Figure 3

bow wave moving ahead of the pressure band and
this results in accelerating the propagation of
Wave energy.
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