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ABSTRACT
A generalized Langevin model is used to conduct
Lagrangian statistical simulations of turbulent

dispersion in a shear-free convective boundary layer.

For instantaneous area sources mean concentration
predictions compare very favourably with convection
tank data. Diffusivities calculated for a near-
surface source also agree very well with convection
tank data and show substantial regions of counter-
gradient flux. Calculations for other source heights
also show regions of counter-gradient flux and
confirm that the diffusivity is a strong function of
source height.

For centinuous area sources model predictions are in
excellent agreement with the results of large-eddy
simulations. They show that there is a strong
asymmetry between 'top-down' and 'bottom-up' disper-
sion processes and that the bottom-up process has a
substantial region of counter- gradient flux in the
upper half of the boundary layer.

INTRODUCTICN

Turbulent transfer in the atmospheric convective
boundary layer (CBL) is complicated by a number of
features of the vertical structure of the turbulence.
These include asymmetry between up-drafts and down-—
drafts (causing the vertical velocity distribution to
be significantly skewed), the size of the eddies
(comparable with the depth of convection) and the
strong inhomogeneity, particularly near the ground.
As a result turbulent dispersion is non-local and
non-Gaussian and cannot be described by simple
Gaussian-plume and K-theory models.

Recently, statistical models of dispersion have been
developed to incorporate these properties of the
turbulence. The analytical statistical models of
Misra (1982) and Venkatram (1983) and the numerical
model of Weil and Furth (1982) treat the wvertical
component of turbulence as homegeneous and positively
skewed and assume that, except for reflection at the
top and bottom boundaries, fluid elements (marked
particles) always move with their initial velocity
(drawn from the velocity distribution of the
turbulence at the source height). Although these
models ignore the effect of a finite Lagrangian
velocity time scale and inhomogeneity of the
turbulence near the surface and the top of the
boundary layer, they capture much of the essential
physics of dispersion from elevated sources in the
CBL.

Full Lagrangian simulations (based on the Langevin
equation as a model for particle velocities) which
incorporate a finite Lagrangian time scale and
inhomogeneity of the turbulence have recently been
carried out by Baerentsen and Berkowicz (1984) and
de Baas et al. (1986). Their simulations are in
excellent agreement with the laboratory convection
tank data for the mean concentration field.

In the present paper we use a modified form of the
de Baas et al. model and focus on flux-gradient
relationships (and their breakdown) in the CBL. In

particular we examine the performance of our model
in describing the non-local features of turbulent
dispersion in the CBL for both instantaneous and
continuous area source distributions.

MODEL FORMULATION

The Lagrangian stochastic approach to turbulent
dispersion is now fairly well-known and so will only
be described briefly (see Sawford (1985) for a
recent overview). Rasically, statistics of the
concentration field are calculated as moments of the
joint probability distribution for the position and
velocity of marked fluid particles. In particular,
for an itrary source distribution, CS(zo,to), the
mements w C are

E
Wi (z,t) = JJJ W'Plw,z,t; z_,t )C (z_,t)
o' o s o' o
o
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where C = C + ¢ and P(w,z,t; z ,t ) is the prob-

ability density that a particle i%it%ally at z_ with
a velocity drawn from the turbulence velocity
distribution at z_is observed between z and z + dz
with velocity between w and w + dw at time t. With

n=0 (1) reduces to the well-known result for the
mean concentration, C. 1In prac%ice the moments are
calculated as averages (of w') over independent
particle trajectories distributed according to P and
C . The problem is, of course, to ensure that the

modelled trajectories are appropriately distributed.

Here we model particle trajectories with a general-
ization of the Langevin equation which invelves
non-Gaussian random forcing. In particular we write

3 0 ]
= — +
aw T 1z,5) dt dwz,t
L
and
")
dZ =Wdt = gw (Z,t) W dt
with
®n_(z,t) b2
< taw, )% > = =S at (n=1,2,..0)
’ g (2,t)
w
and
g 2 = W2 .
w
Z and W are the vertical components of the

position and velocity respectively of a marked fluid
element, T is a time scale over which W is
correlated and d w is a general random forcing.
The notation < > répresents an ensemble average for
fixed Z,t subject to the initial conditions Z(o)=z

and that W(o) be chosen from the distribution at z

of the Fulerian velocity component, w. Eulerian
averages, denoted by ( ), correspond to initial
conditions which. represent an unbiased sample of
fluid element positions and velocities at the
initial time. In general we denote variables
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representing a trajectory in (w,z) space by upper-
case symbols and the independent variables by lower
case symbols, Our trajectory medel (2) is a rescaled
version of the generalized Langevin equation used by

de Baas et al. (1985).
The random forcing moments (i.e. the a ) can be
expressed in terms of Eulerian moments of the

turbulence by requiring that the model satisfy the
2nd Law of Thermodynamics i.e. that an initially

well-mixed state should remain so (Sawford, 1986). A
cerollary of this constraint is that in bounded
turbulence the steady-state concentration

distribution should be homogeneous. For a general,
non-stationary, inhomogeneous non-Gaussian turbulence

the a_ satisfying the 2nd Law are given by (Sawford,
1986)
“n n n+1 n ag”
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Thus, given the Eulerian moments of the turbulence

(and a parameterization for T ) we can in principle
determine the a, which satisfy the 2nd Law of Thermo-
dynamics.

For non-Gaussian turbulence,
Gaussian. It is impractical to correctly specify all
the a and in any case we rarely know more than the
first "three moments of the turbulence. Consequently,
in practice the random forcing required by the 2nd

the forcing (3) is non-

Law of Thermodynamics can only be approximated and we

expect departures from the uniform steady state
concentration distribution. However, numerical tests
show that the steady state distribution is within 5%
of well-mixed for our model and that spurious
concentration gradients are negligible.
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Turbulence parameterizations for the CBL.
Eg.(4), (—): Baerentsen and Berkowicz
(and de Baas et al. w2?), (---); de Baas
et al. w3, (-*-). Data points as in
Baerentsen and Berkowicz.

We parameterize the variance and skewness of the
turbulent vertical velocity in the CBL by

wife,® = 11 (2/2) P 1y 0?3
4(z/z,-0.3)
1 - _____T___i_____r_
- e 2
(2 + ‘/zi 0.3 P4y
and w3 =0.80 3
w
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where w, is the convective velocity scale and z, the
depth of convection. These are plotted in Figure
(1) together with the parameterizations used by
Baerentsen and Berkowicz (1984) and by de Baas
et al, (1985) and with laboratory and field data.
Clearly the scatter in the data is sufficient to
encompass a range of such parameterizations.

The time scale T

T is parameterized by

T, WelZ, =00 2 w2 (5)
which satisfies
Z << Z,.

free-convection similarity for
It is also equivalent to a constant rate
of dissipation of turbulence kinetic energy
throughout the CBL as is observed to a good
approximation. We have chosen a = 2.5 but the
results are not very sensitive to 2 < a < 3. The
equations of motion are discretized using the simple
Euler differencing scheme for which (2) becomes

n+1) + Amz

=% 1-8t/T (2
2 n+1

W
n+l

and 2 = (6)
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with At = 0.02 T.. Aw is a random number with
moments a_At given by (3). All the statisticg
reported 1in this paper are averages over 10
particle trajectories. R

in de Baas

Skewed distributions are modelled as

et al. as the weighted sum of two Gaussians with
mean and standard deviations m, =0, and m, = -0,
respectively.

INSTANTANEOUS AREA SOURCES

We consider the vertical dispersion as a function of
time, of a horizontally homogeneous instantaneous
source located at height z . Although this is a
rather idealized source distPibution our results are
directly comparable with the cross-wind integrated
convection tank data of Willis and Deardorff (1976).
Subject to the constraints of horizontal homogeneity
and negligible wind shear they are also relevant to
the more practical problems of dispersion from a
continuous crosswind 1line source or to the
crosswind-integrated dispersion from a continuous
point source, so long as the streamwise intensity of
turbulence is low. Our results are presented as
functions of the non-dimensional time X = tw,/z.
which in the Taylor approximation is equivalent to
X =(x/U) w*/zi, where U is the mean wind speed.

It foll fr (lLTFn?t for an instantaneous area
source w C =wec +w C is.just the average of w
over all particles released from z at time tS which
arrive at z at time t. Recall that n = 0 gives the
mean concentration, C.

Figures 2(a) and (b) show mean concentration and
flux contours for a source at 0.067 z;- The C
contours show that beyond X v 0.5 the™ locus of

maximum concentration rises away from the surface.
This 'lift-off' phenomenon, is a clear manifestation
of the non-diffusive nature of transport in the CBL.
Sawford (1984) found similar behaviour in a strongly
inhomogeneous analogue of a neutral boundary layer
and concluded that it is a consequence of a large
vertical gradient in the Jlength scale of the
turbulence (i.e. in UwT ). It is clear from (4) and
(5) that near the groung this quantity indeed varies
rapidly with height. The mean concentration field
is practically well-mixed by X ™ 3.

As might be expected, the flux contours are much
clearer indicators of turbulent transport than the
corresponding concentration contours. In particular,
the updraft and downdraft contributions stand out
much more clearly as do reflections at the
boundaries. The flux is negligible beyond X ™ 3.
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Fig.2: Concentration (a) and flux (b) contours

for an instantaneous area source at
z = 0.067 z,.
s i

Inspection of the model results in Figure 2 shows
that the loci of maximum concentration (where
aC/32z=0) do not coincide with the zero-flux lines.
Consequently there are regions of counter—gradient
flux and negative diffusivity. These are associated
with the interaction of ‘'direct' and ‘'reflected'
lobes of the updraft and downdraft plumes (this is
most  easily seen from the flux contours) .
Essentially, particles arriving at a given point can
have widely differing transport histories (depending
on whether they arrive directly or through a
reflection) and hence can have widely differing
effective diffusivities. 1In the present case these
differences are due to the inhomogeneity of the
turbulence, but counter-gradient fluxes are possible
even in homogeneous turbulence when particles
arriving at a given location have different effective
diffusivities because of different release times and
locations (Raupach, 1985).

Diffusivity contours calculated for z_ = 0,067 z, are
shown in Figure 3(a). In Figure 3(b)5we have plotted
contours of the diffusivity calculated by Deardorff
and Willis (1975) from their water tank data. The
correspondence between our calculations and the water
tank data is remarkably good with the main region of
negative diffusivity aligned along the lower side of
the reflected down-draft concentration lobe. At the
left hand boundary of this region the diffusivity
diverges through = since the gradient vanishes
there. At the right-hand boundary it changes sign
through zero as the flux changes sign. There is also
a small region of negative diffusivity associated
with the upper side of the reflection of the updraft
lobe from the top boundary where the flux and
gradient are both negative. The model results also
show a region of negative diffusivity near the top
for 0.5 < X < 1.5 which is not present in the labora-
tory data. This is probably an artifact of the rigid
boundary assumed in the model; in the laboratory
experiments entrainment of fresh fluid through the
interface ensures a positive concentration gradient
there.
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The concentration fields calculated for sources at
0,24 z, and 0.49 z, also agree very well with
convection tank datd. These calculations show the
diffusivity to be a strong function of source
height.
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Fig.3: Model (a) and laboratory (b) diffusivity
contours for the source in Fig.2.

CONTINUOUS AREA SOURCES

Here we consider the dispersion of scalar material
released into (or extracted from) the convectively
mixed boundary layer by continuous area sources (or
sinks). Typical examples of practical interest are
regional dry deposition processes involving a flux
to the surface of materials such as ozone or sulphur
dioxide, regional surface sources of carbon dioxide,
nitrogen oxides, water vapour or methane from crops,
agricultural land or forests and interfacial
entrainment of ozone or water vapour ‘into the CBL
from the free troposphere. 211 these examples
involve continuous area sources either at the top or
bottom of the boundary 1layer. Wyngaard and Brost
(1984) and Moeng and Wyngaard (1984) have studied
these processes using large-eddy simulations (LES)
and have shown that depending on the source config-
uration the 'mixed-layer' may be distinctly unmixed.
Here we examine the predictions of our Langevin
model for these processes and compare them with the
large-eddy results.

For an area source with constant release rate (i.e.
a constant source flux) (1) reduces (for unit source
flux) to

i
w'e (z,t) =J w'c (z,t,£) dt_ (7

o

where we (z,t,t ) is the flux at height z and time
t due to an instantaneous source released at time
t . That is, the continuous area source fluxes can
hg obtained merely by integrating the instantaneous
source result (or in discrete form by summing fluxes
from a series of instantaneous sources). Recall
that n = 0 returns the mean concentration C (z,t).
In the previous Section we observed that the
instantaneous source flux and mean cencentration
essentially converge to their asymptotic values
after a non- dimensional time X-X_~ 3. Thus the
corresponding continuous source quantities also
reach steady state by X v 3. The results we present
here are for X = 4, and integration to larger time
shows no significant changes.
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As noted by Wyngaard and Brost (1984) the flux
profile is constrained by the relation

aC -3  wc

Tk (8)
to be linear in z once the concentration gradient
reaches steady state. Since our model satisfies (8)
exactly (Sawford (1986)), a linear flux profile is
assured regardless of the detailed properties of the
turbulence. Thus, the flux profile reflects little
of the interesting and complex features of the
turbulence and the transport processes. These are
manifested instead through the mean concentration
distribution.

Normalized concentration gradients, q=—(35/az)z./c*,
for top-down and bottom-up dispersion calculated from
our model are shown in Figure 4(a) together with the
LES results of Moeng and Wyngaard (1984). Consider-
ing the differences in the calculation procedures and
the uncertainties involved in our turbulence para-
meterizations, and in sub-grid scale processes in the
LES, the correspondence between these two sets of
results is remarkable. Our bottom-up gradient is
generally weaker and changes sign (corresponding to a
counter-gradient flux) a little lower in the boundary
layer, but otherwise shows all the features of the
large-eddy result. That we have been able to
reproduce this counter-gradient flux and the
increasing concentration gradient at the top of the
CBL is particularly reassuring since the differences
between the large-eddy results of Wyngaard and Brost
and Moeng and Wyngaard suggests that these are quite
sensitive features to model.

a5
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Fig.4: Gradient (a) and diffusivity (b) profiles
for continuous area sources at the top (t)
and bottom (b) of the CBL. In (a) the
broken lines show the LES results of Moeng
and Wyngaard.

Our results show the top-down gradient to be
generally larger than the bottom-up gradient, in
agreement with the LES data, but also show a small
region of negative gradient near the bottom boundary
which is not present in the LES results. Tests with
different turbulence parameterizations suggest that
this may be due to an underestimation of w3 by (4).

As noted by Wyngaard and Brost (1984) and Moeng and
Wyngaard (1984) the top-down and bottom-up processes
are far from symmetrical. In fact the results show
two sorts of asymmetry. Firstly the gradient
profiles are not symmetrical about z/z, = 0.5 This
is due simply to an asymmetric diffusivity profile
and would result even from a first order closure
model with a prescribed asymmetric diffusivity.
Secondly the top-down and bottom-up diffusivity
profiles are different. This is emphasized in
Figure 4(b) which shows diffusivity profiles

455

calculated from our model results. The dependence
of the diffusivity on the source-height in this way
is a consequence of the non-diffusive nature of the
turbulent transfer, as are the regions of negative
diffusivity.

CONCLUSIONS

We have applied a generalized Langevin model to the
calculation of dispersion in the shear—-free
convective boundary layer.

Mean concentration predictions for instantaneous
area sources at various heights in the convective
boundary layer are in excellent quantitative
agreement with laboratory convection tank data. We
have also made calculations of the concentration
flux for these instantaneous sources and so deter-
mined the effective turbulent diffusivity. For a
near surface source the calculated diffusivity field
is in excellent agreement with that inferred by
Deardorff and Willis (1975) from convection tank
data. Our calculations also show the diffusivity to
be a strong function of source height.

By integrating the instantaneous source results over
time we  have also calculated concentration
statistics for continuous area sources. The main
point of interest is the difference between
dispersion from the top and bottom of the CBL. Our
results are in excellent agreement with the LES
restults of Moeng and Wyngaard (1984) and show a
strong asymmetry between top-down and bottom-up
dispersion. In particular, the bottom-up process
has a region of counter-gradient flux in the upper
portion of the boundary layer where the gradient and
flux are both positive.
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