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i
ABSTRACT Vi =0 (5)

In this paper the flow of viscoelastic liquid

through the region bounded by two concentric Operating by (1 + 3 ) on equation (4) and
circular eylinders, under the influence of using equations (1) and (%}' s e

exponential decreasing pressure gradient has

been investigated. For a slowly decaying pressure " { i

gradient when material constants are small o+ N '5%) (3§_E- + Vg vl) =1 1+ )ﬁ-gg)

the flow properties corresponds to that of £

a Newtonian fluid, in case of impulsive type i
pressure gradient the importance of relaxation Xpgr.d

time cannot be neglected. Velocity of the flow ij .

is expressed in terms of Bessel and modified + 2 Yn(" +')‘p'g1';) e ,J (6)

Bessel function.

where .rij and «'.;ij_ denote stress and deviatoric

INTRODUCTION stress tensors, V' the components of velocity,

. g*J are contravariant components of metric tensor,
Non-Newtonian liquids such as blood, thick €,; the strain rate of deformation, p the pressure
oils pastes, paints, colloid solutions are ﬁthe density, Kinematic viscosity the coeffi-
higrlxly viscous. Their behaviour cannot be ex- cients Nor )1’A20ar'e material constants, subject
plained by the classical Hydrodynamic stress-rate to conditions (such as 7 _»0, M yr2 0)
strain relations. Generalising the stress-rate dictated by thermodynamic principles. It was
gg str;ailn reli\tibon; <if clasgiiahl Hydrogyngmifzs, pointed out by Oldroyd [7] that for a liquj n

e rhelogica ehaviour o e non-Newtonian rest 1 =

liquids have been studied by Rivlin [8], Rivlin B "ER" a%MH1q I8 el SISHTS S f?:%ﬁ’ay@t‘"ggs Sany "
and Reiner [9]. Langlois and Rivlin [4] have small rate of strain decays as e™“/ay . Michael
studied slow steady state flow of viscoelastic C. Williams and R. Byron [5] have shown that
fluids through non-circular tubes. Rivlin [10] varies from 1/9 to 2/3.
has discussed some exact solutions of visco-
elastie fluids. Dutta [1] has obtained the FORMULATION AND SOLUTION OF PROBLEM
solutions for viscoelastic Maxwell fluid through
a circular annulus. Jones and Walters [2,3] We shall investigate the flow of viscoelastic
have discussed the oscillatory motion of visco- liquid described by (1) to (5) equations through
elastic 1liquid. Nand Lal Singh [6] studied the region bounded by two concentric circular
unsteady flow of a viscoelastic fluid between eylinders of radii a and b (b<a) under the influ-
two parallel planes under periodic pressure ence of exponential pressure gradient. Using
gradient. In view of the considerable interest the cylindrical ceordinates system (r, 8. Z)s

being evinced at present in the field, it was
considered worthwhile to study the flow of
viscoelastic liquid specified by three constants,

the components of velocity are given by

through circular annulus under the influence Vi =0, V3 =0,V3 =7, (r,t) (7)
of exponential pressure gradient. Expressing
velocity of the flow in terms of Bessel and Using equations (3), (4), (6) and (7) it follows
modified Bessel functions, two interesting that
cases have been studied.
-4 . Bme g
EQUATIONS OF MOTION [ 57 ; (8)
1

The equations of motion together with stress-rate (2 +}\1 -—;% "—-a—% =i % (1 + Al ‘iag "g‘g
of strain relations of viscoelastic liquids,
characterised by three material constants a v (9
viscoeity coefficient and two relaxation times 5 (1. & N __9_) e i —4
under the approximation of small rates of strain Yo 2 9 2 r ar

are given by

where Y= 2 is kinematic viscosity. From equa-

LR -p gij + '::iJ . (1) tions (8) ahd (9) it follows that
"ij i 1l 3 :
(1+ M _:E) T = 2;%1 M—%’E) etd (2) ~ 5 —32 = fb (%) (10)

Since we have assumed the pressure gradient to
be exponential, we can take
2,
dit) = e e™ (11)

g = (M g eV g0 (3)

?c%fi +vhyvd) =gl (1)
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where a and m are real constants. In this case v (T}U) ¥ ( T])
we can assume 04 -
> £(R) = -2 [J, (nR) ﬂ___ B e O

m :

Vz(r',t,} = f(r) e t (12) YO(T]G')J,\(T?)—YO(H)JG(T)U)

where b <r <a

Using relations (11) and (12) in equation (9)

we have J (na) = J_(n)
2 2 - Yo(nR)E . . 5 -1]
d_f+_1 ar , m? (- A%y (r +L§) =0 (13) YO(T]O‘) Jo{ﬂ) i YO(U)JO(T)U)
m®

ar? r O Vo 1-pm
(12)
: = R equation (13) can be expressed
Takine ¥48, °

2 ; Now we shall discuss two cases of small and large
E_a-_?- + % g-% + n? (£ + ks ) =10 (14) values ofy) .
dR* m*
where
3,2 1l - )‘1 m* Case (1): For slowly decaying pressure gradient
'r]"2 = ( ) m is small, it follows from (14a) y is small
Y 1 - n? (14a) and for small values of M,M;the flow corresponds
2 %_ to unsteady viscous incompressible Newtonian

flow. We have the following asymptotic expansions
the solution of differential equations (14) [11].
is given by

21—". : 2 l—,_:.
£(R) = A J(mR) +B Y (np) - % J (q)1 = 225 ¥ (i) = (1 - <U--Z ) loa(nR)
o 0 2 (15) o] 4 o 4
712 nt
where J_ and Y_ are respectively, Bessel func- + m————
tions ocf‘ first™ and second kind and of order A

zere [11]. A and B are constants to be determined

subject to ths following houndary conditidns. Using the above relations, equation (18) simplifies

£(1) = 0; flg) =0 (16) w

. ST ala (02-1) log !:+(1-&"') log o
where )= e

™ n?(a®-1)-n?(1+0?) logofloga?

0 = b/a

(19)

Using the boundary conditions (16) we have,
« . Y. (o) -1 (%)

2 . . Therefore the velocity of the flow in this case,
e Y('}(T]dJ JO(?]) Yo(u) JO(T]O‘) using (12) is given by
(17 (o2 5 2 7
2 g%=1)logi+(1-0%)logo
. I, (ned = 3, (n) v, (r,)=0-% : g
B =g L= m 2(5%-1)-12(1+062)logo+logo
n® Y (ne) I_(n) - ¥.(n) J_(no) el A lezatLog
o Q (o] o
2
x e " b (20)
Substituting for A and B in equation (15) we
have,
Case (2): When m is large and as and are
different
i 4 )\1 '
naw__l'_'l___g Hme— &= =g 2.
Y 22
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The effect of relaxation times cannot be ne glected.
The solution of differential equation (1l4) ecan
be expressed as
& L ¥ 2

f(R) = C I, (nR) + DK, (nR) ~g./m (21)
Where I and K, are modified Bessel functions
of first and sécond kind of zero order [11].
C and D are constants to be determined using

the boundary conditions (16).
conditions we obtain
a

. Z,(n'0) - E(n')
m? I (4K (n'0)-I (n'e) K (n')

Using the boundary

(22)
o

In's) -~ I (n')
m? I(n') K(n'e) = I (n'0) E (n")

when ;1 we have the following asymptotic expres-
sions [11] :
nR .
I, (n'R)Ammee e s Ky(n'r) W e B /2y
2T n'R

Substituting for C and D from equation (22) and
using the above asymptotic values of modified
Bessel functions equation (21) becomes

£(R)=-% [ Sinh 1'(o=R) + Yolinh n'(2-1)
2 I ' i
m VR 38inh = (o-1)
= 7. (23)

Therefore the velocity V is given by

v, (R, t)—-— [ Sinh 7 (c—R) + Vo3inh n LR—l)
m? YR Sinh n'(o-1)

~m?4

-1]e (24)
This is the velocity of the fluid particle in
the present case. If we take A, ~®(0, A, —b0
in the equations (20) and (24), the sofution

of the problem of the flow of an ordinary viscous
liquid through circular annulus can be deduced
as a special case of this investigation.

GRAPH

A graph for different annular regions is plotted
for M= 17100, = 1/300, g~= 1/2, 1/3, 1/4,

o= 107% m = 1and g = 1. It is found that
as the ratio of cross sectional radii decreases
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the veloeity increases, obtaining maximum round
about 0.85.
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