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ABSTRACT

For a given moisture range, the quasilinear
analysis involves only two soil parameters, c, the
sorptive number, and, in most practical
applications, K,, the saturated conductivity. The
formulation preserves integral capillary flow
properties of the soil, yielding relatively simple
solutions amply accurate for engineering
applications in the field. The scattering analogue
augments the power of the method. It makes
available to the soil-water context powerful
techniques and many extant scattering results
developed in fields such as electromagnetics and
acoustics, and  yields solutions of many
multidimensional infiltration problems. Other
applications concern the penetration, or otherwise,
of unsaturated seepage water into cavities and
tunnels. The analysis has been extended to
periodic and unsteady flows.

1. QUASILINEAR ANALYSIS

The concepts underlying the modern physical theory
of water flow in unsaturated soil are due to a keen
disciple of Willard Gibbs, Edgar Buckingham (1907).
The general flow equation which follows (Richards,
1931) is a highly nonlinear Fokker-Planck equatiom,
central to the treatment of unsaturated water
movement as a quantitative predictive field of
physical science (Philip, 1969, 1970, 1972a).

Philip  (1968) showed that representing the
dependence of hydraulic conductivity K (dimensions
[length][time] 1) on moisture potential v
(dimensions [length]) in the form

k(¥ = ke ¥ Vo) (1)
reduces the steady flow equation to the Iinear
V%20 = oaB/dzy , (2)
where the Kirchhoff potential
¥
e - I K av (3)
wl

Here zy is the vertical physical space coordinate,
positive downward, and Vi? is the Laplacian in the
physical coordinates. This formulation applies to
flow systems with -« ¢ ¥, ¢ ¥ g ¥ %0, We call
the analysis based on (2) quasilinear because it
embodies with reasonable accuracy the nonlinearity

of K(¥) and also accommodates :the nonlinear
dependence of ¥ on moisture content.
The prescription
¥y
-1
o = [K(¥)—K(¥,) ] [ I K(¥)a¥ } (%)
v

1

[exact when (1) is exact] is optimal for computing
o« for infiltration from arbitrary three-dimensional

cavities into an infinite region (Philip,
1987).

1985a,

Note from (1) that o has the dimensions [length]-':
and (4) shows that o' is a K-weighted mean
moisture potential. Thus o' is a potential
characteristic of the unsaturated flow process.
The quantity 20°' is the sorptive length and « is
the sorptive number. Note (Philip, 1987) that o is
directly proportional to a characteristic capillary
pore radius R. 1In fact

R=7.4 X 10”6 (5)

when R is in m and o in m"'. The value of o ranges

from 0.2 m™' or 1less in fine-textured snils to
5 m~' or more in coarse ones.

The quasilinear analysis needs only two soil
parameters, K, and a«. In many practical problems

¥, = 0 so K, is the saturated conductivity, and «
tends to be virtually independent of ¥,, so long as
it is large and negative, as in dry landscapes.
Direct field determination of K, and a is under
active study (Philip, 1985b, 1986a; White et al.,
1986) .

2. CONVENTIONAL METHODS OF SOLVING (2)

Solving (2) for buried and surface point and line

sources (FPhilip, 1969, 1971; Raats, 1971) gave
Green's functions leading to solution of many
problems involving flux boundary conditions.
Often, however, practical infiltration problems

involve water supply at ¥ = ¥, and we seek the
resulting flow rate and moisture distribution.
Other than an approximate result based on the point
source (Philip, 1968), the first solution of this
class, invelving dual integral equations, was due
to Wooding (1968).

Separation of wvariables has been used to obtain
exact solutions of (2) for infiltration from
cylindrical and spherical cavities (Philip,
1984a,b). Typical is the solution for the sphere

Kn+i(sr)
P (cosd). (6)

H= [I.]ﬁ T (-1)“(2n+1)1n+%(5)
BB Kn+i(s)

=0

Here I, and K, are modified Bessel functions of the
first and second kinds of order n, and P the
Legendre polynomial of the first kind of degree n;
r is the spherical radial coordinate, normalized
with respect to cavity radius a, # is colatitude,
and r cos § = z = zyx/a. We have also that

‘FD
g = Yo Him gu e % @, - [ Kavy | N
v

with ¥,, ¥, respective values of ¥ at the cavity
surface and at infinity. The dimensionless
parameter s is a measure of the relative importance
of capillarity and gravity. As s » 0, capillarity
dominates the flow process; and as s - o, gravity
dominates. Results following from solutions like



(6) include Q4, the total cavity discharge. For
the sphere we have the typical result
hrro18, T (-1)%(2n+1) Gt e (8)
- = - + N o
Qx o 0 i (-1) (2o Kn+§(s)
=0
Superficially these results are satisfactory.
Problems arise, however, in summing the series
entering equations such as (7) and (8).
Convergence 1is rapid and summation simple for
0 ¢ s ¢ 2; summation is still possible for s = 5,
but the practical limit is about s = 10, The range
0¢8.¢ 10 covers ‘many applications, but

considerable interest attaches to the distribution
of ©, and the value of Q4 as gravity dominates the
flow process (s » ). Numerical work suggested
asymptotic results for s large typified by that for
the sphere

Qe = 4ra19,52(1+2s 2 /7). (9)
This approach, however, fails to explain the
(typical) remarkable result that the second term on
the right of (9) is just 2s°2/3 times the first;
and it gives no information on the horizontal
transition from (near) saturation to (near) dryness
in regions below the cavity.

The corresponding problems for elliptic-cylindrical
(including strip-shaped) and spheroidal (including
disc-shaped) cavities lead to solutions involving
series of Mathieu functions, modified Mathieu
functions with negative parameter, and spheroidal
wave functions either with imaginary parameter or
imaginary argument. Putting aside the formidable
tasks of evaluating many of these, we are still
left with the problem that exact solutions for
these geometries lead to convergence difficulties
as severe as those for the circular cylinder and
the sphere.

These various solutions thus left unanswered the
question, important in many engineering contexts,
of the role of capillary effects in seepage
problems with large length scales. Conventional
means of solving (2) had thus led to something of
an impasse.

3. THE SCATTERING ANALOGUE

These obstacles were largely removed when Waechter
and Philip (1985) recognized the exact analogue
between steady quasilinear flows and the scattering
of plane waves. The analogy is a striking example
of the economical approach to nature afforded by
mathematical physics. Beyond its aesthetic appeal,
the analogue leads to saving of effort and to new
hydrological insights. A considerable body of
established results on wave scattering (e.g. Bowman
et al., 1969), and the associated specialized
mathematical methods, became immediately available
to the soil-water field. Expansions for small s
prove wuseful, but the asymptotic methods and
results for large s are of greatest importance.
These, developed in contexts such as acoustics and
electromagnetics, yield remarkably accurate results
"even far outside the range where they should be
good", in the words of Joe Keller.

Substituting (7) transforms (2) to the
dimensionless
V?H — s?H =0 , (10)

similar in form to the dimensionless reduced wave
equation

V2F + k?F = 0 . (11)
Here V2 is the Laplacian in normalized coordinates,
F 1is the normalized potential, and k is the
dimensionless wave number. The boundary conditions
on (1ll) governing the scattering of plane waves
incident in the z-direction on an acoustically soft
obstacle are simply minus those on (10) governing

infiltration from a geometrically identical cavity.
The solutions of the two systems are thus identical
provided

F=-H k = is (12)
This is the basis of the analogue.
Far-field scattering functions are useful in
scattering theory (Bowman et al., 1969). The
3-dim. funetion is

-ikr
S(0,¢) = lim kr e F(r,0,¥) , (13)

with ¢ the longitude.
Hulst, 1949)
cross-section

An important theorem (Van de
connects the total extinction
0. with the forward scattering

function — in 3-dim. Sy (L.e. 58 for 6 = 0). The
3-dim, theorem is

4
Te = % Im S, . (14)

The analogous far-field wetting functions in the
soil-water context (Philip, 1985c) are also useful.
The 3-dim. function

sT
S(0,¢) = lim sr e™" H(r,0,y). (15)
Philip (1985c) showed that, analogous to the

scattering theorem, the physical cavity flow Qi is
connected to the downward wetting function - in

3-dim. §; (i.e. S for 6 = 0). The 3-dim. theorem
yields
Qx = 87”1 8,5, (16)

The scattering functions appropriate to many 2- and
3-dim. obstacle shapes are available in! the
literature, not only their exact forms but also as
expansions appropriate to small and large values of
k. The expansions are especially useful when the
exact solutions involve exotic functions. The
asymptotic expansions are needed in all cases with
s so large that summation of the exact solution is
impractical. The connexions between scattering and
wetting functions then enable us to exploit the
numerous known scattering results to yield results

on cavity flows in the soil-water context.
Typically, we find, applying (12), (14), and (16)
to the (corrected) asymptotic expansion for S,(k)

for the sphere due to Wu (1956) that the rigorous
version of (9) is

Qu(s) = bra™! B s[1 + 1.99230638 s 2/3
+ 0.71529966 s~ /3 — 0.06093150 s-2
+ 0.0145506 s-8/3 — 0,014886 s-10/3
+ 0(5")] ”

(17

We see that the term in s72/3 is not an empirical
accident, but is rooted in the asymptotics based on
Watson transforms. Jones (1963) gave physical
arguments indicating that asymptotic expansions for
all elliptical-cylindrical and ellipsoidal cavities
involve s-2/3 (though not strips and discs). Note
that the exact coefficient of s 2/3 is not 2, but
is about 0.4% less.

The analogue enables us to identify various regions
of the soil-water distribution about a cavity
corresponding to the optical regions about an
illuminated opaque obstacle. Figure 1 is a
schematic diagram of flow from circular cylindrical
and spherical cavities 1in which we wuse the
terminology of the optical analogy. The
illuminated region is the analogue of that which
remains dry. The umbra (or deep shadow)
corresponds to the essentially saturated region of
the soil, and the penumbra corresponds to the
region where  infiltration from the cavity
significantly wets the soil. It is convenient to
define the umbra as the region with 0.99 ¢ 8/8;, ¢ 1
and the penumbra as that with 0.01 ¢ 8/8, ¢ 0.99.



Figure 1 deals specifically with circular cylinders
and spheres, but similar results hold for cavities
of other shapes.
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Figure 1: Steady infiltration from eylindrical and

spherical cavities. Schematic diagram illustrating
the regions of the flow field, |wusing the
terminology of the optical analogue. See Waechter
and Philip (1985) for details.

Engineers frequently ignore capillary effects in
seepage problems with large length scales
(i.e. with large s). In terms of the optical
analogy, ignoring capillarity is equivalent to

using simple geometrical optics, in which an opaque
obstacle illuminated by plane waves casts a
coherent shadow projected to infinity without
scattering. Note that for steady infiltration from
a cavity, the "gravity-only" solution consists
simply of a saturated column extending to infinity
vertically beneath the cavity, with no wetting
outside the column. Such a solution is singular in
the sense that it gives a wholly misleading picture
of the extent and character of the wetted region.

The analogue has been used to analyze steady
infiltration from buried disc-shaped (Philip,
1986a) and spheroidal (Philip, 1986b) cavities. It
may be shown, both physically and mathematically,
that the dimportance of capillarity relative to
gravity in producing the flow from a spheroidal
source increases monotonically with aspect ratio
(ratio of vertical to horizontal dimensions). This
result leads to design principles for permeameters
used in unsaturated soils. Measurements with the
borehole permeameter (Stephens and Neuman, 1982;
Philip, 1985b), with  large aspect ratio, are
confused by strong capillarity effects. On the
other hand, these are minimal with the surface disc
permeameter (Philip, 1986a; White et al., 1986),
with aspect ratio zero.

4, WATER ENTRY INTO CAVITIES AND TUNNELS

A second class of unsaturated flow problems of
practical concern is also amenable to the
quasilinear analysis. The common picture of the
effect of holes on unsaturated soil-water flow is
that they take no part in the flow except when they
extend to a source of free water. Otherwise, the
conventional argument goes, they are in regions of
negative water pressure, and water from the
surrounding soil cannot enter them. ~ J.H. Knight,
R.T. Waechter, and I have embarked on studies which
reveal that this is mnot necessarily so. We have
been analyzing steady downward seepage in a uniform
soil, interrupted at some level by a hole., The dry
hole behaves, of course, as an obstacle to the
flow. We have calculated the build-up of water
pressure at the walls of the hole. The criterion
for seepage of water into the hole 1s that the
pressure at some point on the walls reaches that of
the local soil atmosphere. The larger the hole,
the more prone it is to have water seeping through
it. This is rather obvious, but contrary to the
conventional picture where the larger the hole, the
less it can be expected to have water in it.

The applications are
solutions illuminate
unsaturated flow.

numerous. Firstly, the
the role of macropores in
Secondly, they apply to caves,
tunnels, and underground storage cavities. 1t is
of especial interest that the results lead to
design criteria for most efficient prevention of
seepage into tunnels and cavities in unsaturated
zones. The engineering contexts will be obvious.
They include optimal design of underground
repositories for nuclear wastes in deep unsaturated
seepage zones in arid areas. Essentially the same
mathematical problem arises when we replace the
hole by a buried impermeable obstacle such as a
stone, a rock, or an underground structure, The
solutions yield the distribution of flow wvelocity
and moisture content about such obstacles.

Solutions for the circular-cylindrical and
spherical cavities show that, in these cases, the
crucial point of water entry is the topmost point
of the cavity roof. I am grateful to J.H. Knight
for allowing me to present Figure 2, a map of the
distribution of @ and of streamlines, computed for
the cylinder for s = 4.

0.75
1.0

Figure 2: Steady wunsaturated seepage about
cylindrical cavities., Map of Kirchhoff potential ©
and stream function for dimensionless radius s = 4.
Bold curves are equipotentials, with the numerals
values of 6/6, with 8; the potential at infinity.
Unnumbered equipotentials are for 6/6, = 2, 3, 5.
Fine curves with arrows are streamlines.



The solutions for the parabolic-cylindrical and
paraboloidal cavities are of especial interest.
They are in simple exact form and numerical values
are readily calculable for the full parameter
range. A notable feature is that the cavity wall
is, for these geometries, mnot only a stream
surface, but also a surface of constant 8. These
shapes constitute separatices between "sharper"
shapes where water entry, if any, is near the base
of the cavity, and "blunter" ones (like the
circular cylinder and the sphere) where water entry
is initiated at the roof apex. Our results
indicate that flat-topped cavities are inefficient
and readily admit water'from unsaturated seepage;
and that v-shaped roofs perform even worse.

5. EXTENSIONS

Various extensions of the quasilinear analysis have

been made ., Limited generalizations to
heterogeneous (Philip, 1972b, 1974) and anisotropic
(Philip, 1986b) soils are possible; and the

analysis also forms a useful basis for study of
periodic (Philip, 1987) and unsteady (Philip, 1969,
1986¢; Warrick, 1974) unsaturated flows.
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