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ABSTRACT

This paper reviews recent developments
in the measurement of three dimensional
unsteady flow fields and the combining of
these measurements with flow visualization
techniques. The critical point concept in
the theoretical description of these
eddying motions is discussed and it is
shown how the topology of complex three—
dimensional steady and unsteady flow
patterns can be understood. Some of these
concepts are applied to simple eddying
motions in periodically disturbed laminar
jets and wakes and ideas gained from this
are applied to some examples in turbulence.

INTRODUCTION

One motivation behind the study of the
description of eddying motions is to gain
an understanding of turbulence. This aim of
course is long term and one of the lessons
to be learnt in this field is that our
understanding of some of the most basic
phenomena in fluid flow is meager and we
have a long way to go in understanding even
simple three-dimensional fluid motion let
alone complex turbulent flows.

The practicing engineer may well ask
why we  torture ourselves in attempting to
gain an understanding of turbulence since
this has proved to be a most difficult if
not impossible task. Surely with modern
large computers we could solve the complete
time dependent Navier-Stokes equations by
specifying the appropriate initial and
boundary conditions and allow the solution
to run its course. As Leslie (1973) states
(and it is still true today) "the short
answer is that large though they are,
present day computers are not large
enough." The problem is that a mesh must be
sufficiently fine to resolve the
dissipating eddies. The so called "Full
Direct Simulation"” or "Full Turbulence
Simulations" currently being studied at
NASA Ames (e.g. see Moin & Kim 1985)
attempt to do this. However, they are
limited to low Reynolds numbers (Re). For
channel flow, Leslie quotes 10% mesh points
are required for Re = 104 and 1013 for Re =
106. Also the number of time steps required
for numerical stability rises rapidly with
Re. Corrsin (1961) gives similar estimates.
For the NASA Ames calculations the mesh is
of order 10%. Then there is the question of
running time and cost. A simulation needs
to be run many times to obtain ensemble
averages with stable statistics although if
there exists a homogeneous direction in the
flow we could average along this
homogeneous direction. It has been the
experience of the author that using
"nature's own computer" - namely the wind

tunnel, 40,000 data samples are needed for
convergence of gquantities like Reynolds
shear stress at a point for 1%
repeatibility although with appropriate
filtering contributions from large scale
guasi-periodic structures require much less
data samples.

The general consensus of opinion is
that some sort of modelling is required and
this needs to be applied to averaged
versions of the Navier-Stokes equations
which have been truncated to a finite
number of probability moments. Lumley
(1978) reviews the "second order modelling™
methods of which the k-£ model is an
example. Unless someone can come up with a
better idea, these second order models or
single point closure schemes offer the best
hope for ‘"reasonable men" working to
produce a cost effective calculation.
However, in the author's opinion, these
methods at best should be regarded only as
sophisticated interpolation schemes which
cannot be applied with confidence to flow
situations which are outside of a certain
range of observation. Also the equations
involved contain complex gquantities which
are difficult to interprete physically. The
keywords. used earlier are "Unless someone
can come up with a better idea". This
should be the aim of most experimental and
computational research. Better ideas can
come only from an understanding and this
usually means looking at relatively simple
cases to begin with.

The Full Direct Simulations being
studied at NASA Ames are the most
satisfying form of computations but will
require an enormous development in both
hardware .&and software before practical
calculations are produced. Even if this
development is successful we still have the
problem of knowing what to do with all the
"data"produced, i.e. how to interprete it
and how to present it in a most meaningful
way and also to know whether the
computations are producing physically
realistic results.

What is attempted here is a review of
simple eddying motions in fluid flow which
possess some of the characteristics of
turbulence, i.e. we will consider among
other things three dimensional motions
which are unsteady and where vortex
stretching processes are occurring. The
relevence of these simple flow cases to
turbulence will then be discussed.

DESCRIPTION OF FLOW PATTERNS
AND EDDYING MOTIONS

Firstly, we will discuss flow patterns
described in terms of instantaneous
streamlines. Such patterns can be
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Figure 1. Classification of critical
point on the p-g chart.

understood when the description is carried
out in terms of certain salient features.
Critical points are such flow pattern
features. A critical point is a point in a
flow field where the streamline slope is
indeterminate. Local series expansion
solutions to the Navier-Stokes and
continuity equations have been developed
and a «classification of all possible
critical point patterns have been made,
e.g. Oswatitsch (1958), Lighthill (1963),
Legendre (1956,1965), Werle (1962,1975),
Smith (1970), Davey (1961), Perry & Fairlie
L9745 Hont - fet " alk (1978), Perry
(1984a,1984b) . Certain planes passing
through the c¢critical points 'can be
identified as containing instantaneous
streamlines and the patterns contained in
these planes are classified in figure 1 as
nodes, saddles and foci. The quantities p
and q are certain invarients of a Jacobian
matrix which occurs in the series expansion
analysis. The quantities can be related to
local gradients of pressure and vorticity
or strain rates. Figure 2(a) 'shows a
surface flow pattern of the downstream side
of a missile shaped body at an angle of
attack. This pattern has been referred to
as an owl-face of the second kind. It at
first looks most complicated but it can be
seen that it ‘can be described quite
succinctly by an arrangement of nodes, foci
and saddles points as seen in figure 2 (b).
Figure 3 shows the instantaneous streamline
pattern down the plane of symmetry of a
coflowing wake at a Reynolds number of
order 1000 as seen by an observer moving
with the eddies. This was obtained
experimentally. Again such a pattern can be
succinctly described by an appropriate
arrangement of nodes foci and saddle
points. There are certain topological rules
which have been developed which enable one
to partially deduce the three dimensional
properties of a flow field given the flow
in a plane of symmetry. Figure 4 shows such
a deduced pattern using the saddle-node
combination theorem (Perry & Chong 1987).
Given a collection of critical points and
their classification there are a limited
number of ways in which the streamlines can

)

Figure 2. (a) Surface flow pattern on the
downward side of a missile
shape body at an angle of
attack. (After Fairlie 1980).
(b) Interpretation using
critical points. Fo= focus,

N = node, S = saddle.
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Figure 3. Typical instantaneous (phase-
averaged) velocity vector field
for coflowing wake.

After Perry & Tan (1984).

be drawn. Thus a qualitative understanding
can be found just by knowing the types of
critical points involved. Also in many flow
situations a Galilean frame of reference
can often be chosen such that the pattern
is almost steady, i.e. guasi-steady. The
streamline patterns then give considerable
insight into the transport properties of
the flow pattern. Besides critical points
there are other flow pattern features which
need to be noted. These are bifurcation
lines and limit cycles and are discussed by
Hornung & Perry (1984) and Perry & Hornung
(1984) .

One of the disadvantages of using
instantaneous streamline patterns is that
they can become extremely sensitive to the
velocity of +the ' observer. “Cantwell
(1978,1981) has shown that if certign
similarity coordinates are used, this
problem can be overcome and unsteady
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Figure 4. (a) Two-dimensional flow field
generated by a vortex pair.
(b); (c) and (d) Conjectured
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Figure 5. Obligque view of single-sided
smoke structures in coflowing
jets and wakes.

After Perry et al. (1980).

Figure 8. Oblique view of vortex skeleton
for double-sided structures.

patterns become frozen and are invarient
under Galilean transformations. In general
we de not know the appropraite similarity
coordinates particularly with experimental
data and a very useful quantity to consider
is vorticity. This is invarient under such
transformations. In fact, vorticity is the
most succinct quantity to use in the
Wake description of a flow pattern. It is the
"genetic code"” but is extremely difficult
to measure accurately. Nevertheless if it
is known the complete velocity field can be
found using the Biot-Savart law.

Figure 5 and 6 show some sketches of
the smoke patterns in coflowing jets and
wakes at a Reynolds number of 1000. These
are periodically disturbed patterns and the
sketches were deduced from strobed laser

Figure 6. Oblique view of double-sided
structures in coflowing Jjets
and wakes.

After Perry et al. (1980).
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sheets which cut through the smoke
patterns. One can see the three dimensional
Kelvin-Helmholtz 1like roll-ups which
abound. In fact, figure -3 is the
instantaneous vector field down the plane
of symmetry of the smoke pattern given in
figure 5. In figure 5 we have single-sided
roll-ups (which could be produced by an
asymmetrical generation of vorticity at the
source) and in figure 6 we have a double-
sided pattern. Using these smoke pattern as
a guide, vortex skeleton structures can be
postulated. Figure 7 and 8 shows such
vortex skeleton structures and by the
application of the Biot-Savart law,
instantaneous streamline patterns are
produced which topologically are the same
as the experimentally produced patterns.

Furthermore, by assuming that the
distribution of vorticity in the vortex
"rods" is Gaussian as in the Rott
(1958,1959) or Burgers (1948) vortex, one

can compute spectra and Reynolds stresses.
Such computations show strong gqualitative
agreement with experiment for such simple
periodic patterns. One is thus led to the
idea that a knowledge of the vortex
skeleton leads to an understanding of
quantities quite often measured in
turbulence (namely spectra and Reynolds
stresses.)

APPLICATION TC TURBULENCE
Large Scale Motions

The patterns so far discussed are not

turbulent but should be regarded as
periodic laminar flows. However, coflowing
jets and wakes from chimneys and the

turbulent wakes from bodies bear a striking
resemblence to these simple laminar flow
patterns. However, there are fine scale
motions superimposed. Phase averaged vector
fields of turbulent wakes behind bluff
bodies have now been studied in
considerable detail, e.g. see Cantwell and
Coles (1983), Perry & Watmuff (1981), Perry
& Steiner (1986) and Steiner & Perry
(1986) . By sampling data on the basis of
the phase of the vortex shedding at the
source, flow patterns are produced which
possess all the same essential features as
have been observed in these simple periodic
laminar flow —cases. Although the
appropriate governing equations differ
because of the high vorticity diffusion
introduced by the fine scale motions, the
essential physical interpretations are the
same ,

Wall Turbulence

One of the most outstanding problems
is the understanding of wall turbulence.
One might ask "What is the wvortex skeleton
of wall turbulence?" Perhaps a clue to this

can be found by studying turbulent spots
(e.g. see Perry, Lim & Teh 1981). Head &
Bandycpadhyay (1981) showed very

convincingly by flow visualization that
wall turbulence consists of a forest of
hairpin vortices. This idea seems to fit in

quite well with the Townsend (1976)
attached eddy hypothesis. Also
instantaneous streamline calculations

produced from such hairpin vortices appear
to possess all the correct transport
properties (i.e. vorticity being lifted
from the surface and fluid from above being
brought down to the wall). Perry & Chong
(1982) and Perry, Henbest & Chong (1986)
have pursued this idea and have developed
mathematical techniques which enable one to
deduce the mean flow, broadband
"turbulence" intensity distribution and
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spectra of a random array of hairpin
vortices assuming certain properties of the

vortices and the probability density
distribution of their scales. This was done
by using Biot-Savart law types of
calculations. Various similarity laws
emerged which can also be deduced by
appropriately formulated dimensional
arguments. So far the various scaling laws

have been encouragingly successful in
describing the distribution of guantities
and spectra in zero pressure gradient
boundary layers over both smooth and rough
wall surfaces and in pipe flow. One
significant finding is that if a
logarithmic law of the wall exists then
this is consistent with an inverse power
law power spectral density for the
streamwise and spanwise velocity
fluctuations but no such law should occur
for the normal velocity fluctuations. Also
a2 link has been established between the
mean velocity profile and the Reynolds
shear stress profile using the Townsend
(1976) representative eddy concept and the
associated eddy intensity functions (Perry,
Henbest & Chong 1986). Such a link is a
first step in the modelling of adverse
pressure gradient boundaary layers.

One of the essential features of this
model is that there must exists a range of
eddy hierarchies whose probability density
function is an inverse power law of
hierarchy scales or else the scales could
be thought of as going in a geometric
progression. How these hierarchies are
formed is a mystery but vortex pairing is
one possible explanation. Eddy scales going
in a geometric progression seems to be a
recurring theme in turbulence. For
instance, the large eddy structures from
chimneys have scales which seem to go in a
geometric progression as we move downstream
as well as the roll-ups in the Brown &
Roshko (1974) plane mixing layer. Also Ho &
Huang (1982) showed that by appropriate
disturbances the pairing process of two
dimensional structures can be controlled.
Perry & Tan (1984) showed the same result
for three dimensional vortex loops. However
the idea of vortex pairing processes
occurring in wall turbulence is still very
much a speculation.

Coherent Structures

The large scale  phase averaged
structures mentioned earlier are often
referred to as coherent structures. There
is considerable controversy as to what
constitutes a coherent structure (e.g. see
Hussain 1986). Many workers appear to
relate this term to the large eddies and

these are often assumed to be organized or
orderly. The view which the author wishes
to express here is that a coherent
structure is a recognizable pattern which
recurs in a flow field. It could recur over
a range of scales and its appearance need
not necessarily be in some orderly array
but could be quite random. For instance,
the attached hairpin vortices in wall
turbulence are coherent structures
according to this viewpoint. These
structures are randomly distributed in
position and are not simply the "big
eddies". Their scale ranges from the Kline
scaling at a smooth wall to the outer
length scale of the boundary layer. Since
the eddies are attached an observer sees a
wider range of scales as the wall is
approached. They have a definite
characteristic direction and lean in the
streamwise direction at approximately 459,
However, these are not the only structures



which occur in, wall turbulence. Perry,
Henbest & Chong (1986) have shown
considerable support for the existence of
fine scale detached eddying motions which
contribute very strongly to a Kolmogorov
inertial subrange. Such structures would be
approximately isotropic in the statistical
sense and would not contribute to the mean
vorticity nor to Reynolds stresses but
would contribute significantly to the
energy dissipation. Such detached
incoherent motions might be the result of
dead attached eddies being convected away
from the wall region by the more active
attached eddies. Expressed in the more
classical terms, the above model has energy
transfer from moderate wave numbers to low
wave numbers (an inverse cascade process)
and also from moderate wave numbers to high
wave numbers (the usually assumed
Kolmogorov cascade process) .

Recent Full Direct Simulation work at
NASA Ames (e.g. Moin & Kim 1985 and Kim
1985) show strong support for the existence
of hairpin vortices in wall turbulence.
However the Reynolds number is low and only
a limited range of hierarchy scales are
produced in these calculations.
Nevertheless with these calculations Dr. P.

Spalart (private communication) has found
encouraging support for the spectral
scaling laws as postulated by Perry,

Henbest & Chong and there is considerable
motivation to increase the Reynolds number
of these calculations by a factor of four.

Plane Mixing Layers

It has often been asked "If coherent

structures are found and understood, how
will this help in our modelling of
turbulence?" This question ‘is partially

answered in the case of wall turbulence but
it has not yet led to a predictive scheme.
It simply aided us in describing what has
already been observed and if it is correct,
we can say we have a better physical
understanding of the phenomenon. Another
example of this application of coherent
structures in the description of turbulence
is in the plane mixing layer. Although so
far the developement is still in its very
early stages, Perry, Chong & Lim (1982)
have modelled the layer with vortices
which have a longitudinal component and
lean in the streamwise direction. They are
somewhat similar to the hairpin vortices of
wall turbulence but are stretched right
across the shear layer. Hairpin vortices
have been observed in the Full Direct
Simulations of homogeneous turbulence with
uniform shear by Moin, Rogers and Moser
(1985) at NASA Ames. Also Breidenthal
(1981) has shown that such vortices exist
by flow visualization. In the model being
described here all vortices start at the
trailing edge of the splitter plate and
this is where the smallest eddies are
generated. It is then assumed that the
larger eddies which form downstream come
from a vortex pairing process such that the
population of small scale eddies are
depleted and the population of larger scale

eddies increase. Thus as we nmove
downstream, eddies migrate in "hierarchy
space" and the "migration policy" is
formulated from a dimensional argument.

This leads to a large group of simultaneous
differential equations which need to be
solved and wusing the Biot-Savart law
techniques developed for wall turbulence
the evolution of spectra can be computed.
Spectra and other guantities satisfy all
the self-preserving flow constraints and
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agreement with experiment is rather good.
Unlike wall turbulence no inverse power law
spectra are formed but extensive -5/3 power
law regions are apparent. The model
actually predicts ‘a -2 power law at
infinite Reynolds numbers. The boundary
conditions for the plane mixing layer are
completely different from wall turbulence.
In particular in the former all vorticity
is created at the source upstream whereas
in the latter there is a continual supply
of vorticity at the wall giving a continual
birth of new eddies and there is a balance
between birth and death. This results in a
completely different spectral evolution for
the plane mixing layer. This is an example
of a model which produces the correct
spectral evolution for the range of data
observed but ‘is based on assumptions which
are completely at variance with classical
thinking. The whole development has been
described by an inverse cascade process.
Although highly speculative it is food for
thought.

CONCLUSION

An understanding of eddying motions
has considerably increased our
understanding of phenomena ranging from
three dimensional flow separation to the
simple eddying motions in jets and wakes.
In short, it has increased our knowledge
and power of understanding fluid mechanics.
The transfer of ideas from these relatively
simple phenomena to turbulence modelling is
sEi-1.1 in its very early stages.
Nevertheless it has caused some of us to
think of other things besides pressure
velocity correlation tensors and’ other such
like quantities. This is not to say that
the more classical approaches should be
abandoned but they certainly need to a
augmented by the more direct physical
interpretations which are generated by the
study of the geometry and topology of flow
patterns.
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