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ABSTRACT

Flow past a cylindrical obstacle in an enclosed
channel is examined when the entire configuration is
rotating rapidly about an axis which is aligned with
that of the obstacle. When viewed from a frame of
reference which is rotating with the channel,

Coriolis forces dominate and act to constrain the
motion so that it is two-dimensional. In this paper a
uniform flow is forced past the obstacle in a channel
which has depth varying linearly across its width.

The latter, which is equivalent to the so-called
B-plane approximation for geophysical flows, permits
waves to travel away from the obstacle, forming a lee-
wave train behind it. If the dissipation in the
system is sufficiently small, some waves can also
travel Targe distances upstream and modify the oncoming
uniform flow. Numerical solutions are presented and
compared with previous theoretical results which are
available in certain 1imits of the governing
parameters. The possibility of flow separation off
certain types of obstacles is also considered.

INTRODUCTION

The study of flows observed from a rotating frame of
reference is clearly of relevance to large-scale
motijon in the oceans and atmosphere, where Coriolis
forces due to the earth's rotation play a significant
role in the dynamics. Although both the ocean and
atmosphere are density-stratified, much can be gained
from studying the motion of homogeneous fluid under
similar circumstances, because this can model the
depth-averaged motion of those bodies. The next step
in the study of large-scale geophysical flows is to
include effects due to the latitudinal variation of
apparent rotation rate, and this is usually modelled
by the so-called A-plane approximation which
represents the variation Tinearly in mid-latitudes.
The resulting spatial gradient of Coriolis force
permits a form of wave motion which travels
horizontally within the system; these waves known as
Rossby waves, are dispersive and have the unusual
property that the Tongitudinal component of the phase
velocity is always directed westwards. The group
velocity can, however, travel in any direction and
some care is required on 'open' boundaries of the flow
domain.

In this paper several important features of B-plane
flows will be examined by considering the relatively
simple model of an uniform flow past a cylindrical
obstacle. Two different shaped obstacles will be
studied: a circular cylinder and a symmetric
aerofoil, both with a uniform cross-section over the
depth of the fluid. The properties of rotating flows,
under appropriate conditions, ensure that the fluid
motion is dominantly two-dimensional and depth-
independent, and this leads to significant simplifi-
cations of the analysis. As is common in laboratory
experiments, the P-plane effects will be modelled by

a linear variation in depth of the channel across its
width. This can be shown to be equivalent,
analytically, to a linear variation in rotation rate
across the channel (Greenspan, 1970) and therefore the
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flows in this study are equivalent to zonal flows in
the oceans and atmosphere. The channel is also
considered to be of finite width and for computational
reasons, outlined later, the channel in this study will
be wider near the obstacle than at the inflow and out-
flow regions. In the laboratory experiments by Boyer
and Davies (1982) the channel is of uniform width and
the obstacle is a circular cylinder. The extension to
an infinite-width channel is feasible in principle,
but a continuous set of allowable wave-modes must be
accounted for. Note that the channel walls in both
this study and the experiments can reflect waves.

The flow is studied over a wide parameter range in
which inertial, B-plane and Ekman-suction effects are
important. The last of these introduces a dissipative
mechanism, through friction in the Ekman layers on the
top and bottom boundaries. The complete flow can be
described by two dynamical parameters, with the effects
of the geometrical parameters being generally less
important provided the channel is not too narrow.

As mentionedearlier, the presence of p-effects allows
Rossby waves to propagate within the system and these
are apparent in an unsteady flow past an obstacle. The
oncoming stream tends to advect most of these
downstream but there will always be some waves with a
large enough group velocity to propagate upstream of
the obstacle. Thus, when the flow becomes steady, as
it always will after a sufficient time, the only waves
remaining are the stationary waves with their phase
speed equal to the local flow speed. These form a lee-
wave train behind the obstacle, similar to that shown
in Miles and Huppert (1968), and they can also signif-
icantly modify the oncoming uniform stream. The latter
effect is similar to that described for internal waves
by Baines (1977), and in the absence of dissipation it
can have a profound effect on the upstream boundary
conditions. In particular, the results in Miles and
Huppert (1968), which are based on the so-called Long's
hypothesis, are deficient in that regard.

Another factor which should be taken into account,
especially when comparing the experimental results with
those obtained analytically, is that the viscous
boundary layers which are neglected in the analysis can
separate from the obstacle and significantly distort
the flow. This is similar to the flow separation seen
in non-rotating flows at high Reynolds number, and it
has been studied extensively in uniformly rotating, or
f-plane, flows where B-effects are neglected. In that
situation it is found that once inertial effects begin
to dominate Ekman-dissipation, the Z3 layers on the
obstacle can separate and enclose a finite region of
stagnant fluid (Page, 1986). Once a B-plane
approximation is included the same situation can arise,
but the critical ratio of inertia to dissipation will
depend on the magnitude of the g-effect, rather 1ike it
depended on the height of the topography in Page (1982).
The effects of E4 layer separation are not included
explicitly in this study, but the criterion for
separation will be examined to determine whether they
might be important. For bodies with a bluff trailing-
edge, such as the circular cylinder, they will be

found to be significant.

The plan of this paper is to first introduce the
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governing eauations and the important flow parameters,
then outline the theory which has previously covered
certain parameter regimes. MNumerical results for two
different shaped obstacles will be shown and compared
with that theory, then the possibility of flow
separation will be examined.

GOVERNING EQUATIONS

Consider a cylindrical obstacle of typical length- and
width-scale 7*, which is mounted vertically in a closed
channel of infinite length, typical width w* and
average depth d*. The channel is filled with a
homogeneous fluid of density p* and kinematic viscosity
v¥*, which is forced through one end of the channel with
a typical velocity U*. If the entire configuration is
rotating about a vertical axis with a uniform angular
velocity @*, and viewed from that rotating frame, then
two important dynamical parameters arise
i £

Ro=h%-; afd ¢ B (1)
known as the Rossby and Ekman numbers, respectively.
For quasi-steady flow with Ro and E small the Taylor-
Proudman theorem applies and the flow is dominantly
two-dimensional and depth-independent, with the
pressure acting as a streamfunction.

Nondimensionalising velocities with U*, Tengths with
i*, times with (9*)-! and reduced pressure with
p*U**1*, the equations for the horizontal components
of the velocity become (Greenspan, 1968)
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As a result of the Taylor-Proudman theorem, terms
involving w or 3/3z can be neglected to leading order
and this leads to the definition of a streamfunction
¢ with
Al ]

u T s (5)
so that y=4P. Eliminating P from (4) and (5), and
neglecting the diffusion terms leads to the equation

Rvpo|uBspl]-pd (6)
The

At Az Ay =
for the vertical component of vorticity, g=V2u.
term on the right-hand side can be determined from
detailed analysis of the Ekman layers on z=tanfy and
z=d, where 8 is the slope of the channel bottom and
d=d*/1*, and this gives that

A
: dx

& _ . tang
9z e & 2 (7)
(see, for example, Roberts and Soward, 1978). Putting
this all together Teads to the equation
az Wor Iz _ . _ gy
TBt+A[amay 3 3z L 28 (8)

where A=Ro/2E% and a=tan6/dE% are the two important
scaled parameters. Both are taken to be (1) numbers
in this study. MNote that t in (8) is the Ekman-
dissipation timescale t=35"%.

The coupled equation V2y=r and (8) can be solved once
initial values of ¢ and ¢ are specified, and in this
study y=-y and z=0 at ¢=0. The equations are then
integrated numerically with the boundary condition
y=constant on solid surface and radiation conditions
on open boundaries.

LINEAR THEORIES

For <<l the equation (8) is Tinear and relatively
easy to solve exactly for the steady flow past a
cylindrical obstacle (Johnson and Page, 1987). For
a=0 the flow is irrotational and as o is increased the
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velocities tend to decrease on the upstream side of the
cylinder and increase on the downstream side. As a»e
this becomes particularly pronounced, with a stagnant
region of fluid forming in front of the cylinder,
extending a distance of order o} upstream, and an
narrow jet, with width of o(1/a), moving around the
cylinder on the Tee-side. Outside of these regions,
the flow is uniform, as is illustrated in Figure 1.
Details of the asymptotics for this flow are given in

Figure 1. Streamlines for flow past a circular
cylinder for A=0 and ©=20 showing the
blocked region on the upstream side and
'western-boundary current' on the down-

stream side.

Foster (1985) and these are in accord with both the
exact and numerical solutions presented in Johnson and
Page (1987). One important feature apparent from the
asymptotics is that the tangential velocity on the
downstream side of the cylinder is v=-iasin2s for
tm<s<m, where s is the arclength measured from the
front stagnation point, so that the velocities in the
'western-boundary current' are of order a. As a result
the derivative dv/ds will be large and negative near
the rear staanation point, and once A is of order 1/a
the possibility of Es-layer separation, such as occurs
in Page (1982), must be considered. Foster (1985)
incorrectly concludes that separation will be suppressed
in that 1imit but in fact a closer examination of his
solution reveals that it will be enhanced.

Another feature apparent in the solution in Figure 1 is
that there is significant, even dominant, upstream
influence in the flow-field. The 'stagnant' region
extends a large distance upstream for o>>1, and this
region was formed through the propagation of Rossby
waves away fram the cylinder. Substituting a harmonic
solution into (8) for A=0 indicates that Rossby waves
do form, but that they decay in amplitude on a time
scale of order 1 through Ekman dissipation.

Similar effects to those described above for the
circular cylinder can be expected for flow past an
aerofoil, and in general they are less problematic,
particularly near the rear of the obstacle. Details
are given in Johnson and Page (1986).

NONLINEAR THEORIES

Some progress can be made with nonlinear theories in
special cases of the parameters A and a. The first of
these is for o large and A of order 1/a, examined to.
some extent by Foster (1985). In this limit nonlinear
effects are restricted to the 'western-boundary current'
region in the lee of the cylinder and Foster shows that
the flow in this layer breaks down once aXx>1/8 for
«>>1. The same restriction is extended to finite
values of « in Johnson and Page (1987), by examination
of the flow near the rear stagnation point, but it is
not yet apparent what form of solution can be expected
for a)>1/8. Since this is a detail which is restricted
to the class of bluff-ended bodies it is not pursued
here; in particular, those difficulties are not
apparent for an aerofoil-shaped obstacle.

The second situation in which some analytical progress
can be made is when Ekman dissipation is relatively



small i.e. when both A and o« are large and of the same
order. 1In that case (8) for a steady flow can be
written as

J(P, T + 20y/2) =0 {9)

where J is the two-dimensional Jacobian, and it follows
that (z + 2ay/2) is a function of v only. Once profiles
for Y and ¢ known at one value of z, for example, this
function of ¥ can be determined and in principle the
solution can be found everywhere. An obvious

candidate for the known profile s the upstream flow at
z=-e, and assuming that y=-y and z=0 at that point then
Y can be found everywhere by solving an elliptic p.d.e.
This is Long's solution, and it has been examined in a
series of papers, one of which is Miles and Huppert
(1968). The numerical solutions in that paper show a
steady lee-wave pattern behind the obstacle, extending
out to infinity due to the absence of dissipation.

Once a/A is about 0.8 one of the streamlines becomes
vertical at one point and for o/>>0.8 some of the
streamlines 'overturn'. Beyond a larger critical
value, a closed streamline region forms in the flow

and the details in that region can only be found by
solving a time-dependent initial-value problem. Such
details are, however, irrelevant because Long's model
is deficient for the reason previewed in the
introduction, namely that upstream influence through
Rossby-wave propagation has been neglected; this means
that ¢ will not be equal to -y upstream and that it is
only really possible to specify the average velocity

at x=-=, with the details of the profile determinable
through appropriate radijation conditions on the time-
dependent problem. This requirement is true for all
values of a/A, but it only really becomes a significant
influence once o/A is no longer small. Experiments
which show significant upstream influence in the
analogous case of a stratified flow are described in
Baines (1977).

Important modifications to the above occur when o and A
are no longer small. No complete analysis is

available in that case but the dissipative effect of
the ¢ term in (8) tends to reduce the amplitude of both
the lee waves and the upstream influence with distance
from the obstacle. The balance of the terms Judg/sx
and ¢ in (8) indicates that vorticity decays over
distance of @(%) due to this effect, so that providing
the upstream boundary is sufficiently far away then a
uniform flow is a suitable boundary condition at that
point. In the next section some numerical solutions
will be presented which take advantage of this feature.

NUMERICAL SOLUTIONS

To examine solutions of (8) over a range of 0(1) values
of @ and A, the equation was solved numerically for two
different shaped obstacles: a circular cylinder and a
symmetric aerofoil. Although the steady solution was
of nrimary interest, the equation was integrated as a
time-dependent problem starting from the A=a=0
potential solution at £=0. The integrations were
continued until the vorticity fields at successive time
steps differed by less than 0.1%.
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Figure 2b. Vorticity contours for A=8, o=8.

The numerical solutions for the streamfunction and
vorticity past a cylinder when A=8 and =8 are shown in
Figure 2, and these fall roughly within the A=0(a),
o>>1 parameter range described in the previous section.
Some upstream influence is apparent in front of the
cylinder, but this decays towards the left-hand
boundary, which is twenty radii upstream. The standing
lee waves behind the cylinder show features similar to
those in Miles and Huppert (1968), but none of the
streamlines are vertical at any point. The wavenumber
of the standing waves can be obtained from (8) through
a simple argument, described in Johnson and Page (1986,
1987), and it is equal to b=(2a/x)¥=1.4 in this case.
This is broadly confirmed by the numerical solutions.
Also apparent in the Tee-waves is the dissipation effect
of Ekman suction which leads to a decay of vorticity
over a length-scale of order A downstream. The rear
stagnation point presents some problems in terms of
numerical resolution, due to the appearance of a
singularity there, and this can be seen in the vorticity
plot close to that point.

The avoid the difficulties at the rear stagnation point,
flow past a symmetric Joukowski aerofoil was sought.
This should have similar upstream influence and lee-wave
effects to the circu]ar obstacle, and it also has the
advantage that E<-layer separation is largely suppressed
(see next section). In Figure 3 the streamfunction and
vorticity fields are plotted for four pairs of

a

M

Figure 2a. Streamfunction contours for A=8, n=8.
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Figure 3. Streamfunction and vorticity plots for flow
past a symmetric aerofoil when (a) A=n=1
(b) a=e=2 (c) r=a=4 (d) r=c=8.

parameters along the line A=a. The contour intervals
are identical in each case and from this it is clear
that the strengths of both the upstream effect,
apparent in the vorticity fields, and the Tee waves
are increase as A and o are increased, and that they
extend further from the obstacle for larger values of
A. In addition, the wavelength of the lee waves is
similar in all cases, as would be expected from the
}imiting wavenumber b=(2a/A)# being constant on the
ine A=a.

BOUNDARY-LAYER EFFECTS

In Page (1982) the flow in a rotating annulus with
bottoT topography was examined and it was shown that
the Ea-layers on the vertical surfaces could separate
if inertial effects were sufficiently strong i.e. that
A was large enough. Similar effects can be expected
in the flow examined here, particularly for bodies
with bluff trailing edges, such as the circular
cylinder. 1In fact, as is shown in Page (1986), the
flow past a circular cylinder separates even for =0,
provided X is greater than %, so that it is likely
that separation will effectively invalidate the
solutions in that case for all parameter values other
than small A. A necessary condition for separation
can be calculated in the same manner as Page (1982)
and gives that

dv

0
g

< -1 (10)
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for separation to occur, where v_ is the velocity
around the obstacle surface and 2 is measured from the
forward stagnation point. For a circular cylinder the
maximum value of dvgy/ds occurs at the rear stagnation
point with separation occurring for A of 0(1) when a

Jds 0(1), and A of at most 0(1/a) when a is large. The

latter result contradicts the conclusions in Foster
(1985); details of the reasons for this are given in
Johnson and Page (1987). For an aerofoil, gradients

of vy are less severe near the trailing edge and
separation is delayed to some extent. Separation will,
however, occur for large enough values of A.

CONCLUSION

Numerical solutions were presented for B-plane flow
past obstacles, in the presence of Ekman dissipation,
and the general features are in accord with previous
linear and nonlinear theories which are valid in
restricted parameter ranges. Upstream influence and
lee waves are shown to extend to within 0(X) of the
obstacle for steady flow when i=0(«). For A0 the
obstacle affects the flow over distances 0(a?) ahead,
with a 'western-boundary current', of thickness 0(1/a)
for o>>1, behind. The flow in that layer becomes
nonlinear for A=0(1/a), leading to difficulties near
the rear stagnation point of bluff bodies. Further
details of all flows regimes are presented in
Johnson and Page (1986,1987).
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