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i INTRODUCTION

The subject of the normal or direct hydraulic jump
has been extensively studied in most types of open
channels, but comparatively little has been written
on the allied phenomenon, the so called "undular
jmpll.

The undular jump is the transition water surface
profile from a weakly supercritical flow to a weakly
supercritical flow. Throughout the length of this
transition, the water surface has a wave like profile
of diminishing amplitude which may extend for a
considerable distance downstream. The surface is
almost free of the rough and turbulent appearance
associated with the normal jump, with the exception
of the first crest, in which such turbulence
occasionally appears (Fig. 1).

frame of reference attached to the first modulation of
the wave train. Although this formalism is plausible,
such transformation does not recognize the considerable
difference in boundary layer formation under the bore
and under the undular jump. Under a bore the boundary
layer develops in a favorable pressure gradient
(pressure decreasing in the direction of motion), and
thus remains thin and attached to the bottom of the
channel, In the undular jump, the boundary layer
existing on the supercritical flow encounters a sharply
rising pressure gradient. It is found then that it
thickens rapidly and is liable to separation from the
bottom, a circumstance which can be verified in the
laboratory and has been reported previously by
Einwachter (1935).

Fig. 2 sketches this fundamental difference.
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It has been experimentally determined (Bakhmeteff
1936) that the value of the initial Froude No. which
separates the normal from the undular jumps in
rectangular channels is about 1.73, which corresponds
to a ratio of the conjugate depths y,/y, of about 2.
For larger Froude numbers, the jump Eakes the
conventional form of a rather short, steep and highly
turbulent standing wave front.

Because the limit Fr = 1.73 is easily exceeded in
flow in steep channels or immediately below sluice
gates, the generation of stable undular jumps is no
trivial matter, even under controlled laboratory
conditions. They are seldom seen in nature. Due

to the experimental difficulty of generation, the
study of the jumps has often been made through the
observation of the translatory wave called the
"undular bore". Such waves can be generated by
sudden variations of the discharge of a weakly
supercritical flow, and can be theoretically reduced
to the undular jump by a single kinematic transform-
ation. Undular bores are common in hydropower canals
after load rejection maneuvers, or in estuaries where
the tidal range is considerable. The analysis of the
bore is generally confined to the case of the wave
advancing on still water of constant depth (Favre
(1935), Keulegan and Patterson (1940), Sandover and
Zienkewicz (1957)), etc.).

The kinematic transformation to a stationary wave is
possible due to the fact that the wave moves at nearly
constant velocity, so that the momentum and energy
equations for steady flows may be now employed in a
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The difference in boundary layer development in the
bore and in the jump has an obvious influence on the
stability of the water surface. In the jump, the
region gbove the separation bubble, located almost
always below the first crest has a rough appearance and
may break into a roller similar to that found in the
normal jump. The bore, in contrast, shows a smooth,
unruffled surface to values of Froude number well in
excess of those indicating wave breaking in the

undular jump.

The passage of flow through critical depth is
accompanied by the appearance of transversal (Mach)
waves on the surface. Such waves can also be observed
over the standing wave formed over long broad crested
weirs, although they are less marked than those over
the undular jump. The reason for the Mach waves is
not clear, but it is suggested that they may be
connected with the existence of a lateral boundary
layer, which, by retarding the fluid near the wall
forces a transition through critical depth sooner than
for the fluid near the centre. The effective width of
the channel is thus progressively reduced downstream,
and the Mach waves seen in experiment are identical to
those obtained by small deflections of the lateral
boundaries (Fig. 3).
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When the transversal waves meet at the centre of the
flow they generate a higher wavelet or "cox-comb"
which may be significantly higher than the rest of the
surface (Fig. 3-b). The existence of the surface
transversal waves and of a region of separation
beneath the first crest are features which suggest a
certain three dimensionality of the flow in this
region of the undular jump. By contrast, the flow
near the leading wave of the undular bore is free
from Mach waves and exhibits in general a glossy,
smooth surface. This characteristic is far from
having only a purely "cosmetic' importance. The
existence of the undular jump depends to a marked
degree on the available energy and very small
departures from the values of E found in the parallel
supercritical flow preceding the jump will force a
transition to an ordinary type of jump, as explained
in Fig. 2. It also follows that the calculation of
energy losses in the jump is extremely difficult, not
only because of the wavy surface, and adverse
pressure gradients on the bottom boundary layer, but
also because of the two local sources of energy
dissipation pointed above. In the case of the
undular bore, relatively simple boundary layer
calculations have enabled Hawaleshka and Savage
(1966) and other authors to obtain good agreement
between measured and computed water surface profiles.

2 EXISTENCE OF THE UNDULAR JUMP, EXPERIMENTAL
STUDIES

Early experimenters, such as Darcy and Bazin (1865)
observed and described the wnndular jump. In their
case, the jump was produced in a channel of moderate
slope, in which the Froude number of the flow was
below Fr = 2. Favre (1935) found experimentally that
undular jumps appear when the ratio of initial to
critical depth, Yofy, , exceeds 0.67, equivalent to a
Froude number of 1.57. Only conventional jumps (with
rollers on the free surface) can exlst for
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Bakhmeteff (1936), in a study of conventional
hydraulic jumps which is one of the most important
contributions to this subject, proposed a criterion
for the formation of undular jumps:

Fo < N3

/y, <2
which rests upon the following argument: the ratio
between initial and sequent depth for a conventional

Jump Ast M _ scfireR? -1)
B, (€8]
while the initial energy of the flow is:
E= y,0+ R%)
Thus the ration of sequent depth to initial energy:
% 1esR? -t

E 2 +R2

This relation has a maximum for Fc;='ﬁ , indicating
that such jump is the highest for its initial energy.
It 1s 1ikely that this explanation was prompted by the
fact that the leading wave of the undular jump is
higher than that indicated by (1).

(2)

Experiments by Ovalle and Dominguez (1934) revealed
that only undular jumps were possible if ‘J,g exceeded

0.733 (Fr = 1.593), but that, if special pncecautions
were taken, undular jumps could persist up to ratios
%nu = 0.423 (Fa=3.63)

C

The reasons for the passage of water surface profile
from an undular form with low energy dissipation to
one where the extent of the flow expansion is short
and turbulent is explained in Sec. 3.

3 THE LIGHTHILL-BENJAMIN DIAGRAM

A convenient way of explaining the existence of
undular jumps has been suggested by Benjamin &
Lighthill (1954). Briefly, in open channel, steady
flow there are two convenient parameters which
describe the flow regime: the specific energy

E=y + ‘42/2952 (y=total depth, q=unit discharge), and
the specific momentum M = 9%qy+ Y¥/2

Presented in dimensionless form, they are:

E*=%;=VI+EI:1 ) 3
M“:%z=% +% (4]:9;:) (tﬂ

This pair of equations may be viewed as the parametric
representation of the relation between M and E , and
as such 1s plotted in Fig. 4. The function

My = f(Ey) is seen to have two branches intersecting
at the point 1.5, 1.5 which is of course the minimum
value which either function could have in parallel,
steady flow. There are two branches: subcritical
and supercritical. The domain of variation of the
specific momentum and energy is divided into 3
distinct regions by the two branches. The
boundaries, the lines themselves represent the only
possible relation for My vs Ex when the flow is
parallel and steady. The undular jumps are
contained in the region between the two branches.

The regions outside are not accessible to steady
flows. Line AB in figure 4 represents the variation
of energy in a flow which starts from the super-
critical branch and ends on a parallel flow with same
momentum on the subcritical branch, in other words,
this represents the energy loss for the direct
hydraulic jumps. The inscribed values of the
relative depth on both branches furnish the conjugate
depths of the jump. The mechanism of energy
reduction is quite complex but one may suggest four
possible contributions.

1. By shear at bottom and sides of the channel.

2. By turbulent energy dissipation at the surface,
after the break of the first wave.

3. By maintenance of regions of recirculating fluid,
a roller at the surface of energetic jumps
(Fr 3) and smaller rollers at the separation
regions at the'bottom.

4, By energy radiated forward into the train of
stationary waves.

The decrease in momentum due to these processes will
come mainly from shear forces at the wetted perimeter.
Let us assume that it is represented by the difference
BB' on Fig. 4. 1f the energy decrease 1s less than
AB , the M,, Ey relation cannot satisfy the parallel
flow condition and the jump remains undular. On the
other hand if the loss is greater than AB the flow is
again incompatible with steady state conditions and
the jump will not be statiogary.
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Fig. &4 The Benjamin-Lighthill diagram.



4 ENERGY BALANCE IN AN UNDULAR JUMP; THE PRESSURE
DISTRIBUTION

Consider now the specific energy diagram E = f(y).
The two points 0 and 1 represent the initial and
final conditions of parallel flow for which

E
\o c 2

Fig. 5
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Between 0 and 1 the E'= E(y) relation will be that
shown by the wavy line C which asymptotes to the
parallel flow E curve. This relation is not
possible unless the basic assumption on which the
specific energy curve E was constructed, namely, the

hydrostatic pressure distribution of the flow, is now
relaxed.

A more general definition of the specific energy is:

] )2
1 £ XNy (5)
=L/ @+ £+ Z
E y _L ( 79773 )
If the pressure is considered to be composed of a
hydrostatical component I‘g(fj-i} and a
dynamical component Pd_,ﬂthe energy equation is:
z Ij vl
=Y+ + v (L += )dz (6)
i ﬁ%&* 1, ]% %5 )

The last two terms are due to the effect of flow
curvature and will be shown in Sec. 5 to amount to:

aoy?
%—Hz(w %}a
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as in general the slope of the water surface is
small, it follows that the interséctions between the
curves C and E in Fig. 5 will be at the points where
Y =0, near the points of inflection of the water
surface profile.

, thus:

&)

An experimental proof for this assertion was obtained
in a series of runs conducted at the Laboratory of
Hydraulies of the University of Tasmania, For
example, in run No. 9 the inflection points of the
first four waves of the undular jump are indicated in
Table No, 1.

Run No. 9
Initial depth Vg = 37.0mm
Conjugate depth yl = 53.1mm
Froude No. F- = 1,323
Max. Energy Loss &E= 0.53mm.
Yo
= = 0,829
Ye
Wave yinflection(mm) E-at yi(mm)
1 515 68.8
2 50.9 68.6
3 513 68.7
4 50.2 68.4

The energy loss AE was computed from the classical
" 3

equation: . (y-uY /44y,

and indicates just how small is the allowable head

loss for the undular jump.

At other points of the curve C the pressure
distribution will be quite different from the
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hydrostatic and the proper description of the water
surface profile entails the definition of such
pressure distribution.

5 FORMULATION OF THE PRESSURE DISTRIBUTION
IN WAVY TWO DIMENSIONAL FLOW

The dynamics of such flow are decribed by the
equations of momentum in the x and y direction
(parallel and normal to the channel bottom, which
makes a small angle with the horizontal).

2 au _. _1 J i T .
uj':}‘ + VLo ?a_;% +g sine +%_E P

U Oy +V 2oz =~ Up Oz =g cose + 3Goa am
together with 5he continuity equation:
u i o

o (I1)

The surface and bottom boundary conditions are:
at the surface z =y V= Us g——i (12)

p =0

and at bottom z =0 v =20 (13)

The left hand side of equations (9) and (i®) may be
reduced with the help of the continuity equation tn
the expressions:

UL 4ol iyt Q0¥ s
ax. T sd az(u} v
U.a._U' U‘ég‘: uzé U ¢
Ix v oz aX U-) h

The ratio between the transversal and logitud:ins.
velocities 1s now related to the boundary coadiiin:
of the problem. At the surface: 1 _ %%

m

Y. - 0
(/.0

One may assume with Boussinesq (1868) that at
intermediate points the ratio %b is given by the line=z

relation:
* o B4

U g oax (16)
Serre (1953) is led to the same expression through a
different argument. By inserting this relation into
the momentum equations one finds:

and at bottom

u* 9y . _1 g in at
S L e T
EL(uy-yt). p R g R (18)

The variation of pressure in the vertical direction is
obtained by integrating this last equation, using the
boundary condition p = 0 at z = y and neglecting the
small term OT/dX

o]
3 n_yt2 2
Plz}= Pq cose (§-2) + GIH_L)/M zdz (19)
= z
The integral term on the right hand side of this
equation may be evaluated by postulating that amywhere
in the channel the velocity distribution is given by:

L= of U(%)Y” (20)

where U is the mean velocity : q/g and N a constant.
This type of self-similar distribution has been
widely employed in boundary layer analysis. The
constant N is taken as approximately 7 to 10 depending
on the Reynolds-number of the flow. Under this
assumption the pressure distribution is then:

" (2N#1)/
prey =pg (4-2) +pUTCARNGS X1 E) ) e

in the case of uniform velocity distribution (N->o9)
we retrieve Serre's equation:

2 1L X
PEY= FI04-2) +4 U4 -4~ (E) ) e
The dynamic contribution to the pressure distribution
is seen to depend on the curvature of the water
surface. For the crests of the waves 5"’40 and the

total pressure is less than the hydrostatical, the
situvation is reversed at the troughs.

Given the vertical velocity distribution, equation
(16), horizontal velocity distribution (20) and
pressure distribution (21), one finds for the
generalized specific energy (equation 9):
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2
(v (N#1Y U (yy"-
= Ycosd + ﬁife)2g NENE2) 9 (23)
The coefficient of the term 'él‘ is seen to be the
Boussinesq velocity dis tribution parameter (3 Again,

by assuming uniform velocity distribution, (23) reduces

to the expression (9) quoted in Sec . 4,

6 WATER SURFACE PROFILE OF THE UNDULAR JUMP

As the local depth y of the undular jump satisfies the
differential equation (23), one may obtain the surface
profile by integration of this equation, on the
assumption that the local value of E could be
formulated in terms of x and y.

Given the arguments considered in Sec. 3, it seems that

the energy dissipation in the jump is a very complex
phenomenon, and thus the sr.e.ady state approximation:
dE:so
K 2R (24)
where C = Chezy coefficient and R = hydraulic radius
can but roughly describe the true situation. In
spite of this caveat such integration will now be

o —

attempted. To simplify the problem, it is convenient
to scale the depths and horizontal distances in terms
of the critical depth v.+ Thus, with1) =Yy, and
g—- we find:
m 2
E*,«]+22+ L ("= 1) (25)
iy - S, - i(na de )/ (26)

valid forsa rectangular c:hannel with width b and small
slope.

A first integral of (25) may be obtained by
recognizing that:

% <*m"~*1“)= ng-*;,(%") @n
so that: g)- %’ (E* 13 "(i )d"'[ (28)
If the initial conditions are that the undular jump
starts from parallel flow, then Hence
'I']
7' G([ e -piad gdp) @

o
Although (29) affords a powerful and simple condition
for the existence of a solution of the system (25) and
(26), this can only be obtained by numerical integr-
ation.

7 NUMERICAL INTEGRATION OF THE SYSTEM

It was found that the integration of the system was
not easy. Several standard integration methods, such
as Milne's 4th order predictor corrector proved
unstable. After considerable testing, the 4th order
single-step method of Bulirsch-Stoer (Acton, 1970)
proved most suitable. All methods were extremely
sensitive to the correct evaluation of the specific
energy term E ., This is not surprising in the light
of the previous discussion: the energy loss within
the jump must be confined between narrow limits for
the undular jump to be possible. This condition is
also implicit in equation (29), in which the wvalue of
E must be defined so as to allow n'? to remain
always positive. For this reason, the slope and
frictional terms in the numerical calculation must be
specified very precisely. Given the approximation
involved in the computation of energy losses, it is
not entirely unexpected that the comparison between
computed and measured profiles is not satisfactory.
The first crest was not too badly reproduced, but the
damping of the amplitude of the calculated profile is
much less than the experimental values. Further
progress in the areas of numerical computation and
estimation of energy is evidently necessary.
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However the numerical integration proved far more
successful in the solution of a similar problem.

Fig. 6 shows the comparison of the undular profile
created over a very rough and long broad crested weir
(experimental data from Serre 1953). Both the wave
shape and length are well predicted by numerical
method, except at the end where the flow went into a
free overfall. It must be remarked that the undular
flow is entirely confined within the subecritical
regime, thus no localized losses due to wave breaking
or Mach waves was apparent.
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