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ABSTRACT

We present an experimental study examining = the
generation of internal waves by unsteady inertial
outflows from a stratified reservoir. The
experiments show that shear waves generated when the
outflow is begun are identical to those generated
when the outflow is stopped. The amplitudes of the
lowest mode-number shear waves can be accurately
calculated by assuming that they must combine to
form the steady-withdrawal-layer velocity profile at
the wall. As R, the parameter governing steady
withdrawal behaviour, is increased, the observed
shear wave amplitudes decrease relative to their
theoretical values, with the discrepancy increasing
with increasing mode number. When the outflow is
repeatedly pulsed, the flow is generally directed
towards the sink, suggesting that one effect of
unsteady withdrawals may be to create a thicker
effective withdrawal layer than would be found for
similar steady withdrawals.

INTRODUCTION

The presence of a stable density stratification in
storage reservoirs means that water withdrawn at a
particular elevation tends to come primarily from
adjacent strata. Information about selective
withdrawal that is currently used by engineers in
the design of offtakes has been mainly derived from
experiments and theory concerned with withdrawal
layer dynamics when the outflow is either steady, or
is impulsively started and then allowed to run to a
pseudo-steady state, i.e. a state in which the flow
evolves over a period of time much Tlonger than
required for internal waves to actually set up the
layer (Imberger, 1980). Thus we might ask: How
should the steady theory be modified to account for
the common case where the outflow rate varies
considerably with time, i.e. what happens when the
outflow changes before the steady layer has been
established? To address this question, it is
necessary to first consider how a steady withdrawal
layer is set up.,

When withdrawal of fluid from a stratified reservoir
is suddenly started, the flow is initially potential
(Pao and Kao, 1974; Imberger et al., 1976, hereafter
ITF).  The withdrawal layer first forms near the
sink as buoyancy forces come into play, generating
internal waves which modify the potential flow so
that the velocity field away from the sink matches
that at the sink (ITF).

The internal wave field so generated has a simple
asymptotic form if the reservoir is much longer than
it is deep (Pao and Kao, 1974), In this case non-
hydrostatic pressures can be neglected; the
resulting internal waves consist of an infinite
series of columnar disturbances, called shear waves
by McEwan and Baines (1974). Shear waves travel at
the appropriate longwave speed; 1in a linearly
stratifie% fluid of depth H, and buoyancy frequency,
N, the ntN mode (one having n velocity nodes)
travels at a speed, C,, given by Pao and Kao (1974),
as

C, =

NH(nm)=1 (1)
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Because of frequency dispersion due to non-
hydrostatic effects, an initially sharp front
diffuses; according to McEwan and Baines (1974), the
frontal width S, defined as the distance over which
the amplitude of the shear front changes from 10 to
90% of its full amplitude, at time T, asymptotically
reaches the value (in a linearly stratified fluid):

(2)

Approximately 1/3 of the frontal region is ahead of
the point where naX = NHT, i.e. the position of the
front neglecting dispersion. Finally, because of
viscosity, shear wave amplitudes are attenuated with
distance from the source of the waves; the e-folding
time D, is (Silvester, 1977; ITF)

S, = H(NT)'/3 n-1

D, =2n72 772 y71 Y2 (3)

n
where v is the kinematic viscosity of the fluid.

ITF developed a classification scheme, largely based
on shear-wave dynamics, which showed that the
evolution of the withdrawal flow is determined
mainly by the value of the parameter R as defined by
the relation

R = q(N v2 12)7'/3 (4)
where q is the flow rate and L is the length of the
reservoir, If R > 1, convection dominates and the
shear waves will propagate out setting up an
inertial withdrawal layer of thickness

(5)
at a distance x from the sink in a time T6 such that
(6)
Although there is some uncertainty for the case

R > 1, the results of Silvester's (1977) experiments
confirm much of ITF's analysis.

1 =
8, = 0(q /2§ /2)
i =3
NT‘5 = 0(x GI Y .
One obvious means of extending ITF's analysis to

account for more general variations of flow rate
with time is to suppose that the withdrawal layer is

set up near the sink such that for any q, §
satisfies eq. 5u The resulting velocity
distribution 1is then broken down into its modal

components, which propagate as shear waves out into
the interior of the fluid. This approach should be
valid if the time vrequired to establish the
withdrawal layer near the sink, Tes is much Tess
than the time over which the flowrate varies. Since
the region over which the isopycnals bounding the
withdrawal layer are significantly drawn down has a
width 0(8) (Pao and Kao, 1974; ITF), the fundamental
setup time is O(N°1), i.e. setting x = § in eq. 6
gives NTe = 1. Thus if NT¢ >> 1, where T¢ is  the
timescale of flow variations, the withdrawal layer
thickness near the sink should satisfy eq. 5 as
suggested. Where x >> N§ T, the local flow will be
determined by some superposition of decaying shear
waves; consequently the Tlocal withdrawal layer may
not satisfy eq. 5.
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As part of a longer-term project investigating
unsteady selective withdrawal, an experimental
programme was designed to test this proposition for
the simple case of a finite duration (pulse)
outflow. The experimental results we present show
that, with certain qualifications, this appears to
be a valid approach to analysing the flow if R =
0(1).

We will also present results from an experiment in
which repeated opening and closing of the valve, and
the consequent shear-wave generation led to a more
complex velocity time series than was observed in
single pulse experiments.

THEORY

As ITF's analysis shows, it is useful to study parts
of the selective withdrawal flow in isolation. We
will assume that the velocity distribution on the
wall X = 0 (see Fig. 1) is known and examine the
generation of shear waves by changes in that
velocity distribution.

FREE SURFACEW =-g/L

Z=H ¥
VELOCITY
DISTRIBUTION
/ ON WALL
S
Z=0

SAMPLE SHEAR FRONTS:
(1ravsl atCp= M:l)
nx

{ n=3 not shown )

Fig. 1: Definition sketch for unsteady withdrawal
from a stratified reservoir

Following ITF, using a balance of 1inertial and
buoyancy forces we define non-dimensional variables
as x = X/L, z = Z/H, T = T(NH/L), u = U/(g/H), and
w= W(q/H) (see Fig. 1). 1In the 1limit (A = H/L,
F = q(NL2)"1, Gr™1 = N2L%"2) all are infinite
(ITF), the governing equations can be reduced (Gill
and Clarke, 1974; Monismith, 1986) to the single
pair of hyperbolic equations:

Dt up tcp Dt Ly = 0 (7)

where the operator Dy = (9 + c, 9,) is defined
along characteristic curves in the (xfi) plane given
by the relation

dx = £ c dt . (8)
The dimensionless velocity, wu, and isopycnal
displacement, 3; z = w (which replaces pressure) are
given by the modal expansions (including the
eigenfunctions appropriate to the case where N is a
constant):

n=«

1
us= 3 uy (x,t)(2 jznwcos(nwz)) + ug(x,t) (9)
n=1
and
n=c 1/ ;
£ = ) g (x,t)(2 "%in(naz)) . (10)
n=1
We will not calculate ug, the barotropic

contribution to eq. 9 here because it does not
directly affect the formation of the withdrawal
layer (ITF); however, ug,, must be included so that

the total wvelocity field can satisfy the free
surface boundary condition shown in Fig. 1 (Gill and
Clarke, 1974) since all of the baroclinic modes
satisfy the condition w = 0 at the top and bottom of
the water column. If u(x = 0,z,t) = f(z,t),

u(x = 0,t)= le(nw)“l jlf(z,t)cos(nnz)dz i i ]
0

If the dimensionless height of the sink above the
bottom is h, and we assume the distribution (Koh,
1966; Spigel and Farrant, 1984),

fz,t)= (2y)71[1 + cos(my"1(z - h))Je(t) (12)

for ze(h - y, h + y) and f(z,t) = 0 otherwise, where
y(t) = (6/H) is the dimensionless withdrawal layer
thickness (assuming that we know &) and 8(t) is the
fluctuating outflow rate (scaled by some mean value
q), then u,(0,t) is easily evaluated by integrating
eq. 11. e case y = 0 was analysed by Pao and Kao
(1974), ITF and Silvester (1977).

Once we know the initial conditions on u, and g,
and the boundary condition un(o,t), we can integrate
eq. 8 along characteristic curves given by eq. 9 to
find the velocity field for all x (but not valid for

X = O(A)}. For example if we suppose the wu,(x,0)
= ;n(x,D = 0, then it can be shown that
un(x,t) = un(D,t - nax) (13)

for an infinite duct, or for a finite reservoir
before shear wave reflection. Fig. 2 sketches the
situation for the case of a finite impulse, i.e.
8(t) = H(t) = H(t = tgy,), (H is the Heaviside step
function) in a finite reservoir; in the absence of
viscous dissipation, it is easy to see that the
pattern 6(t) is repeated with a period of 2nw. More
general outflow patterns can be treated by simple
means such as that discussed in Monismith (1985).

t=2nx t=t +2nn
| |

t=0 un=u/

Fig. 2: Propagation of a modal pulse along
characteristics in the (x,t) plane

Corrections for the effects of frequency dispersion,
which mainly influence frontal width (McEwan and
Baines, 1974; Pao and Kao, 1974), and dissipation
(ITF), which reduces frontal amplitude, are
relatively straightforward (c.f. eqs 1 and 2).

EXPERIMENTAL SETUP

OQur experiments were performed in a tank 5500 mm
long by 500 mm wide by 600 mm deep. Several 2 mm
slits were machined in one end of the tank: the
lowest slit, situated at z = 0, was used to fill the
tank; the second slit, 155 mm off the bottom, was
used to withdraw fluid from the tank. The fluid was
linearly stratified with a mixture of salt and fresh
water. The tank and filling process are described
in detail in Silvester (1977). Density profiles
were taken with conductivity probes mounted on
stepper-motor-driven traverses.

Two means of measuring fluid velocity were used:
the bead-plane technique developed by Silvester
(1977), and a laser-Doppler anemomenter (LDA). The
bead-plane technique was used in the first series of
experiments (Exps 84-1, 84-2, and 84-3). This



technique entails photographing the motions of
small, neutrally buoyant particles illuminated by a
slit lignt source., Each exposure consists of three
superposed images of the field particles, taken with
short flashes at 4 sec, intervals. The velocity
field within the camera's field of view is then
derived for each exposure by measuring particle
displacements. Silvester estimated that velocities
measured with this technique are in error by no more
than 0.01 mms™1,

An LDA, set up in forward-scatter mode, was used in
the second series of experiments (86-n) to measure
the velocity at a fixed point in the tank (generally
at x =~ 0.3, z = h). The LDA is made up of standard
DANTEC 55x series optical components. On the
receiving side, the photomultiplier-tube signal is
fed into a frequency tracker where it is amplified
and the Doppler signal extracted. The LDA's
sensitivity, which 1is determined by the optical
configuration, is 5.02 MHz/(ms™1); consequently, the
accuracy of the system as a whole is approximately

0.2 mms~1. A digital representation of the Doppler
frequency and an indication of tracker lock is
sampled at 75 Hz by a microcomputer; all valid

readings for a given 1 sec. interval are averaged
together and stored. Because the flows were
laminar, and because large density gradients were
never created at the level of the measuring volume,
signal dropout due to index-of-refraction variations
was not a problem.

As we will discuss in the next section, the first
series of experiments showed that the vertical
structure of the shear wave modes was exactly as
predicted theoretically (within experimental error);
hence, in the second series of experiments, shear
wave amplitudes were taken directly from the LDA
measured velocities,

A1l of the series 84 experiments and most of the
series 86 experiments consisted of opening the valve
for a period of time less than that required for the
first shear wave (n = 1 when h = 0.33 and n = 2 when
h = 0:50) to reach the measuring station, generally
located near x =~ 0.3. One experiment (86-5) was run
in which the valve was opened and closed 4 times.
Table 1 presents a summary of the experimental
parameters for both series.

Table 1 Experimental Parameters

q N H Ton R GI Type
Exp.  cm2s-1 571 cm s cm
84-1 2.3 0.43 32.0 30 1.0 4.6 Bead/S
84-2 4.6 0.47 48,0 19 1.9 6.3 Bead/A
84-3 1.2 0.43 32.0 41 0.5 3.3 Bead/S
86-1 5.5 0.73 31.4 30 2.0 5.5 LDA/S
86-2 8.1 0.73. ;31,1 30 2.9 6.7 LDA/S
86-3 10.5 0.73  30.7 30 3.8 7.6 LDA/S
86-4 11.5 0.73° 301 30 4.0 7.8 LDA/S
86-5 1.5 0,683-.31.0...300- 0.6 3.1 LDA/S
Note: 1. 6y = 2.0 /2 N /2,

2. Type refers to bead-plane vs., LDA velocity
measurements; /S refers to symmetric
withdrawal (h = 0,50 ) while /A refers to
asymmetric withdrawal (h = 0.33).

3. 4 cycles, 300s on /300s off, in 86-5.

EXPERIMENTAL RESULTS

A potential flow was always set wup by the
propagation of a long surface wave when the valve
was first opened; upon reflection from the far wall
this wave developed into a barotropic seiche. This
potential flow can fluctuate considerably if the
valve is opened quickly; in particular, the unsteady
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barotropic (depth-averaged) velocity will be 0(q/H)
which is comparable to the unsteady baroclinic

velocity wnich is v(g/6) since, 6 = U(H) in our
experiments. Because we are mainly interested in
the baroclinic velocity field, the barotropic

contribution to the measured velocity must somehow
be removed. In the series 84 experiments,
fluctuations in velocity due to the barotropic
seiche were partially filtered out of the velocity
measurements by the averaging inherent to the bead-
plane technique. However, since the seiche period
was roughly 6 sec. and the averages were over 8
sec., some additional error in measuring shear wave
amplitudes may have been introduced. Barotropic
motions were especially evident in preliminary runs
made with the LDA; in the series B6 experiments the
valve was opened slowly so as to eliminate the
barotropic seiche as much as possible. By trial and
error we found that if 5 sec. or more was taken to
open or close the valve the amplitude of the
barotropic seiche could be adequantely reduced.

dx _
at =%

- |
|
[« ag I MODE & PULSE

TIME (t)

dx _ ¢,
——at

MODE 0 (POTENTIAL)
PULSE

[ TR

“"'DI‘I =

Mo+

I POSITION (x)
OUTFLOW (9)

[

u(hx’ 0

Fig. 3: A sketch showing the mode-number dispersive
propagation of shear wave pairs in the x-t
plane for the experimental conditions. MO
refers to the barotropic mode which
propagates with dimensionless speed C,.

The effect of frequency dispersion on each
of the pulses is also shown in approximate
fashion

In the main group of experiments to be discussed
(series 84 and 86-1 to 86-4) the outflow was stopped
soon after it had been started. In all seven of
these experiments, T,, was sufficiently small that
none of the shear waves reached the measuring
station before the valve was closed. These
experiments proved ideal for examining shear wave
propagation since in these experiments each of the
first three (either n = 1,2,3 when h = 0.33, or n =
2,4,6 when h = 0.50) positive (generated by starting
the flow) shear wave modes could be observed
arriving at the measuring station, followed at the
appropriate interval by its negative counterpart.
Because of the difference in phase speed among the
resulting modal pulses (see eq. 1), we observed each
modal velocity distribution in isolation. This is
sketched in Fig. 3. Each positive wave set up the
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appropriate velocity profile; subsequently, each
negative wave returned the velocity profile to one
showing no motion. This is shown clearly in Fig. 4
which plots velocity profiles at three different
times in Exp. 84-3. The shape of each profile is
very close to the modal form, u ~ cos(nwz).

The departure at any given time of the shear wave

fronts from their step function shape in the x
direction because of frequency dispersion can be
seen in Fig. 5a-5c, which plots the spatial

structure of modes 2,4, and 6 in Exp. 84-3, at the
time(s) they were within the camera's field of view.
Because of the isolation of each mode, and because
only even modes are present, centreline velocities
are equivalent to modal amplitudes. The positions
of the fronts, as calculated using Eq. 1, (nm x = t)
are also marked in each figure.
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Fig. 4: Velocity distributions in exp. 84-3:

(o) mode 2 at (X,T)=(193em,110s); (%) mode
4 at (X,T)=(161cm,170s); (&) mode 6 at
(X,T)=(174cm,274s)

The temporal evolution of the centreline velocity at
a fixed x position can be seen in Fig. 6a-6c, which
plots LDA-measured velocities as functions of time
in Exps 86-1, 86-2, and B86-4. Experiments 86-1
through 86-4 were all performed without refilling
the tank after the first experiment in the group
since the changes in fluid depth induced by the
short outflows (T, = 30 sec.) were quite small

(approximately 2% of the depth between Exps 86-1 and
86-2); essentially the only parameter which differs
among these four experiments is g, the outflow rate.

A1l four of these experiments have values of R > 1,
and show the effect on the flow of increasing R,
i.e. increasing nonlinearity, while keeping all the
other parameters more-or-less fixed.

Figure 6a-6c shows the same isolation of shear wave
modes seen 1in the series 84 experiments. The
leading and trailing edges of the pulses shown in
Fig. 6 correspond quite well to the calculated
arrival times of pairs of positive and negative
shear waves; accordingly, we have only indicated on
Fig. 6 which mode, e,g. mode-2 (M2) is responsible
for a particular pulse in the velocity signal.
Figure 6a is the clearest in showing the potential
flow, four pairs of outgoing shear wave modes (n =
2,4,6 and 8), and several reflections of the mode-2
pulse. Although the other two plots are similar, as
R is increased (Fig. 6b and 6c), first-mode shear
wave amplitudes increase proportionately more that
do those of the higher modes. In Fig. 6b, the mode-

i1

8 pulse is virtually nonexistent. In spite of a 50%
increase in flow rate between Exps 86-1 and 86-2,
the amplitudes of the mode-4 and mode-6 pulses in
Exp. 86-2 are only marginally larger than those seen
in Exp. Bb-1l. [nis trend of relative reductions in
higher mode amplitude continues a R is increased:
in Fig. 6c, the only identifiable modal pulse is the
mode-2 pulse.
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Fig. 5: Horizontal distribution of centreline

velocity in exp. 84-3: (a) mode 2 at
t =98s (A) and t = 130s (m); (b) mode 4
at t = 194s; (c) mode 6 at t = 274s

A further important difference between Fig. 6a (or
6b) and 6c is the appearance of short period
(roughly 20 sec.) waves following the mode-2
pulse. Dyestreaks near the sink indicated that
motions of fluid in the withdrawal layer towards the
sink continued after the valve was closed (this is
to be expected, according to linear theory). As
this flowing layer collided with the wall, a series
of bulges, similar in appearance to the solitary
waves observed by Kao and Pao (1980), developed and
propagated into the interior of the fluid. We
speculate that these 'solitary' waves are the short
period waves seen in Fig. 6c.

From Fig. 5a-5c, Fig. 6a-6c, and similar figures for
the other series 84 (see Billi, 1984) and series 86
experiments we have estimated the modal amplitudes
for the first three modal pulses. We have then
compared them with theoretical values calculated
according to the theory presented in Section 2 and
using a numerical 1nq$%ration of Eq. 11, assuming
that  &p = 2.0(q/N) (Imberger, 1980), and
accounting for viscous dissipation using Eq. 3. The
results are presented in Table 2, which shows a
reasonably good agreement between theory and
observations, The results for Exps 84-1, 84-3, and
86-1 agree most closely with theory; in these three
cases, the difference between theory and observation
is within the expected experimental error ~ 0.1 mms~™!
- mainly due to surface seiching). It should be
noted that the assumption that & is finite gives
second and third-mode amplitudes 20 to 30% smaller
than the values calculated assuming that § = 0.
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Fig. 6: Velocity time series in (a) exp. 86-1, (b)
exp. 86-2, and (c) exp. 86-3. Positive
velocity means flow towards sink. Mn
refers to the mode-n pulse, while the
superscript r refers to the number of
reflections
Table 2  Modal Amplitudes
a3 2z as
Exp. R Y (mms~1) (mms~1) (mms~1)
meas.theory meas.theory meas.theory
84-1 1.0 0.14 1.20 1.38 0.75 0.98 0.45 0.51
84-2 1.9 0.13 0.90 0.95 0.67 0.91 0.80 1.72
84-3 0.5 0.10 0.80 0.74 0.55 0.61 0.35 0.37
86«1 2.0010,18 r3.15 73,221 2.12::2:30 1.06"°1.20
86-2 2.9 0.22 4.09 4.60 2.37 2.98 1.13 1.24
86-3 3.8 0.25 .4.84 5.78 2.21 3.31 0.96 1.04
86-4 4.0 0.25 5.38 6.52° 1.53 3.73 - l.40
Note: 1. y = §p H™L.

.

A1l theoretical values calculated according
to Eq. 11, including the viscous correction
to amplitude, Eq. 2.

3. For Exp.84-2 h = 0.33 all other experiments
h = 0.50, for this h = 0.33 subscripts 1, 2
and 3 refer ton = 1,2,3 otherwise ton =
2,4, and 6.

4, Measured mode-2 amplitude in Exp. 86-4 is

questionable, see Fig. 5c.
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In the other
between theoretical
with increasing mode number.

three experiments, the difference
and measuring values increases
There appear to be at

least two possible sources for this effect:
nonlinearity and frontal interference, Consider
first Exp. 84-2, which exhibits the 1largest

discrepancies between theory and observation in the
84 series and which was the shortest run of the
series (Ty, = 19 sec.). This experiment was carried
out at R = 1.9, roughly the same value of R as in
Exp. 86-1, in which there was found good agreement
between measured and calculated modal amplitudes.
This .rules out nonlinearity as the primary cause.
Next consider the effects of the short outflow
time. We calculate that the shear fronts 'should
have had the following separations between positive
and negative fronts: (n = 1) 136 cm, (n = 2) 68 cm,
(n = 3) 45 cm. When the measurements were made, the
frontal widths should have been 123 cm, 68 cm and
52 cm respectively. Considering that the estimate

of frontal widths given by Eq. 2, 1is only
asymptotic, and that frontal widths are roughly
equal to the frontal separation, interference

between positive and negative fronts is a plausible
cause of the reduced modal amplitudes.

In contrast, the decreases in modal amplitudes seen
in Exps 86-2 through 86-4 appear to be related to
increasing nonlinearity. There is little change in
the second- and third-mode amplitudes between Exp.
86-2 (R = 2) and Exp. 86-4 (R = 4), despite the fact
that the flow rate nearly doubles. Even the first-
mode shear wave amplitude appears affected by
inceasing nonlinearity, as the difference between
measured and theoretical values increases with
increasing R; at R = 4, the measured value is only
83% of the calculated value., Thus, we must conclude
that as R increases, the shear wave description
begins to break down, first for higher modes, and
finally for the Towest mode.

The last figure, Fig. 7, shows Exp. 86-5, a run in
which the valve was opened and closed four times,
each cycle consisting of 300 secs. open and 300
secs. closed. The flowrate was approximately the
same for each of the four pulses. Using the initial
value of N and the average value of q, the time to
steady-state Ty = 4%(N8)"1 (the constant of
proportionality in Eq. 6 1is taken from Ivey and
Blake, 1985), is calculated to have been 350 secs.
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R =0.57
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0 60 120 180 240
TIME (s) x 101

]

300

Fig. 7: Velocity time series in exp. 86-5

Two aspects of Fig. 7 are of particular interest:
(1) the amplitude of the velocity pulse measured in
the interior grows with time, and (2) the flow is
almost entirely towards the sink. The growth in
pulse amplitude indicates that each set of positive
and negative shear waves generated after the first
set was able to add to the amplitude of the previous
positive and negative fronts, The observation that
the flow was almost always forward was supported by
observations of the deformation of dyestreaks in the
tank. As in Silvester's (1977) experiments,
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initially vertical dyestreaks showed the sequence of
arrivals of shear waves. However, the dyestreaks
also showed a net deformation between the beginning
and end of an experiment at elevations above and
below the boundaries of the steady withdrawal
layer. Because of the decay of higher-mode motions,
the forward flow at the measuring stations was
dominated by  lowest-mode motions;  hence the
effective withdrawal layer at the measuring station
was thicker than the withdrawal layer near the sink
itself.

CONCLUSIONS

While it is well known that waves can be generated
by starting to withdraw fluid from a stratified
reservoir, experiments and theory presented in this
paper show that negative waves of equal amplitude
can be generated when withdrawal is stopped. A
finite pulse outflow will result in a pair of shear
waves propagating through the fluid such that the
modal component of the pulse travels - at the
appropriate modal speed. The amplitudes of the few
lTowest-mode pulses can be calculated with reasonable
accuracy by assuming that the velocity distribution
at the wall is the steady withdrawal profile given
in eq. 12,

As suggested by ITF, the number of wave modes whose
behaviour can be described by the Tlinear theory
decreases with increasing value of the parameter
R. At the highest value of R attained in this
study, only the Tlowest-mode pulse was observed.
Furthermore, the amplitudes of high-mode waves
appear to depend on the Tlength of time flow is
maintained; for very short outflow pulses, the
discrepancy between theoretical and observed modal
amplitudes increased with increasing mode number.

One noteworthy feature of the multiple pulse
experiment that was carried out was that the flow at
the point of measurement was always towards the
sink. Since this sinkward flow was primarily caused
by the passage of 1lowest mode shear waves, the
effective withdrawal layer, in terms of overall
changes in the density stratification, may have been
much thicker than the steady withdrawal layer set up
near the sink,
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