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ABSTRACT
A two-dimensional numerical model has been developed
to predict natural convection in slots. In this
paper calculations made by this method are compared
with the results of a full three-dimensional analysis

and a quasi-two-dimensional method which seeks plane
flow solutions but retains the three-dimensionality
of the temperature and stream function.

These models have been applied to a slot heated from
below and the results compared with those from a
Galerkin analysis made by Frick (1983). Very good
agreement between all models is found for the case of
adiabatic sidewalls. When the walls are highly con-
ducting, the agreement is affected by the influence
of the modelling assumptions on the critical Rayleigh
number and the buoyancy created by cross-slot temper—
ature gradients. In all cases the two-dimensional
method offers considerable savings in computational
effort.

INTRODUCTION

One method used to inhibit natural convection in the
air space between a solar collector and its cover
plate relies on inserting thin plane partitions which
divide the space into a series of vertical slots.
Because the partitions are normal to the surface of
the collector they have little effect on the heat
input by radiation into the collector. However,
viscous interaction between the air and the partit—
ions significantly reduces the strength of convection
and hence heat loss back through the cover plate.

In the northern hemisphere it is usual to arrange the

partitions so that the slots are aligned with the
their planes across the direction of slope of the
collector. As demonstrated by Symons and Peck (1984)

more effective supression may be achieved by
the slots up the slope of the collector.

aligning

The convection in cross-slope slots consists of a
series of rolls with their axes normal to the partit-
ions. In up-slope slots a single roll can exist when
the angle of inclination exceeds 24 deg. When mult-—
iple rolls occur, the essential mechanisms of the
convection can be understood by studying convection
in  vertical slots between horizontal isothermal
surfaces, a situation which corresponds to a solar
collector which is not inclined. When the partition
spacing is very small, the convective flow is very
similar to that ‘in a porous medium heated from below
and is amepable to analysis using the Hele Shaw
approximation as reported, for example, by Elder
(1967), Hartline and Lister (1977) and Frick and
Clever (1982).

The work reported here
research directed at

is part of a of a programme of
developing a numerical method
which can be applied to the single roll convection in
the up-slope slots, and concentrates on the validaL-
ion of the model described by Mallinson (1984,1986).
This model uses assumed forms for the variation of
velocity and temperature across the slot to derive a
set of two-dimensional governing equations which can
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be solved sufficiently quickly to permit application
to slots having large up-slope aspect ratios.

The data wused for validation were published by Frick
(1983) who used a Galerkin procedure to predict
natural convection by an infinte Prandtl number fluid
in vertical slots between horizontal isothermal
surfaces., The partitions forming the slots were
either adiabatic or perfectly conducting. Trick's
data were produced by a fully three-dimensional

analysis and an approximate plane flow analysis. The
plane flow model described here replicates this
approximation.

Finite difference methods are used in the present

study. Three different models for the convection in
the slots are used. The first is a fully three dimen-—
sional model similar to that described by Mallinson

and de Vahl Davis (1973). The second model 1is based
on the assumptions made by Frick (1983) to produce
plane flow solutions. The third model 3is the

two-dimensional model described by Mallinson (1984).

NUMERICAL MODELS FOR SLOT CONVECTION

Three Dimensional Model

The slot, shown in Fig. 1, has dimensions L, Ly and
Lz such that Ly is much smaller than either Lx or Lz.
The x beoundaries of the slot are isothermal with the

the boundary at x=0 being the greater,
(i.e. T,> T,). Using Ly, kf/Ly and Dqu/Li as the
scale factors for distance, velocity and pressure,
and defining 6 = (T_Tl)/(TU_Tl)' the equations govern-

temperature of

ing steady Boussinesq convection are;
v.Vy = - VP + RaPr6i + Prvy, (n
v.y = 0 ; (2)
e = V%0 (3)
Ra and Pr are the Rayleigh and Prandtl numbers -
respectively.

These equations can be expressed in terms of the vort-
icity, g, and a vector potential, ¥, defined by;

v o= Ux¥ 7 V=g, (4)
The curl of equation (1) yields,

V% (gxv) = — RaPr(v=6{) + Prv’g (5)
and the equation relating vorticity and the vector
potential is

vy =t (6)

Boundary conditions for ¥ and ¢ can be derived from

the relevant boundary conditions for velocity. For
the plane boundary at z = 0, say,

b, = v, = 8,/ =0. (7)
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Fig. 1. Cavity dimensions and orientation.

The boundary conditions for ¢ depend on whether the

boundary is rigid (non slip)“or free (perfect slip).
The conditions at z = 0 when that boundary is rigid
are,

g, = - 8%, ez, ¢, =-3%,/%% i,=0. (8)
When the same boundary is free, the boundary condit-
ions are,

¢ =¢ = 0, 23/ez=0,. (9)

1 2 3
The boundary conditions for 8 at x=0 and x=1 are,
0 =1 and 8 = 0, respectively. (10)
If the y boundaries are adiabatic,
90/0y = 0, at y =0 and y = Ay. (11)

The conditions for perfectly conducting y boundaries
are,

B =1x aty=0and y = Ay. (12)

For this study, the z boundaries are adiabatic so that
98/3z = 0, at z = 0 and z = A,. (13)
The above equations can be solved numerically using

the finite difference method described by Mallinson
and de Vahl Davis (1973) in which second order finite
difference approximations are wused throughout and
steady state solutions are generated by an alternat-
ing direction implicit iterative procedure.

The full three-dimensional analysis can, in prin-
ciple, be applied to any rectangular cavity. However,
as discussed by Mallinson (1986) time step restrict-
ions resulting from small mesh intervals in the y
direction render the analysis to be computationally
expensive. This difficulty provided the motivation
for developing the approximate methods described
below.

Plane Flow Mocdel

Frick (1983) used a Galerkin method to solve govern-—
ing equations which had been expressed in terms of
two scalar potentials for velocity. Approximate solut-
ions were obtained by ignoring one of those potent-
ials. This approximation is equivalent to assuming
that v=0 so that the flow is plane in the x-z direct-
ions and allews the velocity field to be described by
a single scalar potential, VY say, where,

u=-00/3z and w = 9/0x, (14)
The vorticity equation
single
1€,

(Eq. (5)) then reduces to a
equation for the y component of vorticity, &,,

2 : 3
2L,y + %;(wcz) = RaPr£ &V (15)

The stream function is related to this vorticity com-
ponent by,
20 =
vy = - g, (16)
and the energy equation reduces to
3 (ug) +2 (wg) = V2. (17)
3x 9z

Note that the functions u, v, ¥, C,, and 8 are depen-—

dent on all three space variables but the Laplacian
in Equ. (16) is two-dimensional.
The appropriate boundary conditions for U are

that $=0 on all impermeable boundaries. Boundary cond-

itions for g, at the x and y boundaries are,

T, =~ g;$ at x = 0 and x = 13 (18)

£,=0 at y=0andy=A4, . (19)
For non-slip z boundaries,

;2=_3_:g at z=0and z = A, , (20)
whereas for free z boundaries,

g, =0at z=0and z =4, . (21)
The assumption of plane flow reduces the number of

solution variables from 7 to 3, (¢, ¢, and 8), which
results in a significant reduction in computational
effort. The three-dimensionality of the Laplacian
operators in Equs. (15) and (17) does, however, lead
to severely restrictive time steps for small Ay.

Two-dimensional Model

The two-dimensional model relies on the assumption
that the flow in a narrow slot closely resembles
laminar flow between parallel planes. Accordingly the
velocity field can be assumed to be approximated by

u = f(y)u(x,z), v=10, w=£(ywix,z) (22)
where
£(y) = 6y(Ay,~y)/A7 . (23)
Making these substitutions, it follows that U and W

can be generated from a stream function {§ such that

i =- 00/9z and W = 30/9x. (24)
The y component of vorticity is given by
g, = (30/dz - aW/a)E(y) = T,E(y) (25)
and is related to the stream function by,
V=, - (26)

After substitution and integration over y, the vortic-
ity transport equation becomes,

1.2(3 (z.§) + 3.(2,w)] = Ra8f + V3L - 12_/AZ . (27)
B hom e el 2zt 272 2"y

where the y-averaged temperature field is denoted
by 6%.
f

In general, the temperature in the fluid can be
approximated by,

8y =8 (x,2)h(y) + g (x,2) (28)
where Op is the temperature at the wall/fluid inter—

face and 8¢ is the mean deviation of 8¢ from By.

If the side walls (y boundaries) are adiabatic,
9g =0 and Oy is given by

2 (uBp) + 2 (WBy) = V2By. (29)
Bx(u b) Bz( b) ¥'b



Tf Lhe side walls are
and h(y) is given by,

perfectly conducting, O = 1-x

h(y) = 5(y" + Agy ~ 24,y )/Ay

(3)

(30)

Substitution into Eq.
cavity width yields,

and integration over the

(51/42)[ 3 (UBs) + 2 (Wdg)] = V%8¢ - 100¢/A5 - G. (31)
ox 9z

Heat Transfer

The heat L..nsferred by the convecting fluid can be

calculated by evaluating a Nusselt number which is

estimated by using a 3 point forward difference
approximation for the temperature gradient and
Simpson's rule to calculate the average heat flux
through the x=0 boundary.

RESULTS AND DISCUSSION
Frick (1983) published solutions for vertical slots

heated from below and filled with a high Prandtl
number fluid. The Galerkin procedure used by Frick
produces estimates of the critical Rayleigh number

and wavenumber for the motion following the onset of
instability.
The finite difference method used here does not pro—

duce direct estimates of the critical Rayleigh number
and wavenumber. The critical Rayleigh number can be
estimated indirectly by subjecting a '"zero flow"
solution to a suitable disturbance: growth to form a
steady flow implies Ra is greater than the critical
value. The wavenumber can be estimated by obtaining
solutions for a range of values of roll aspect ratio
and using a suitable indicator, such as maximum in
the rate of heat transfer, to determine the preferred
wavenumber.  Both methods can involve prohibitive
amounts of computer time, especially when using a
three-dimensional solution method.

Accordingly, the technique adopted in this study was
to obtain solutions for single roll having an apsect
ratio corresponding to the wavemumber predicted by
Frick (1983). The z boundaries representing the inter—
face between rolls are free and adiabatic. Following
Frick's example, the critical wavemumber was used for

all super-critical Rayleigh number solutions. No
attempt was made to predict the critical Rayleigh
number, the basis of comparison with Frick's data

being the predicted Nusselt numbers. All numerical

solutions obtained here are for Fr=10"%.

All three-dimensional and plane flow solutions used a
21x21x21 mesh. Experiments confirmed that reducing
the number of mesh points in the y direction, even
for small A was not possible since the truncation
errors induced were invariably greater than the
errors associated with the assumptions leading to the
two-dimensional model.

The two-dimensional solutions used for comparison
with the three-dimensional solutions use a 21X21
mesh. Some solutions were, however, obtained with a

41x41 mesh to investigate the effects of mesh refine-
ment in the x-z plane.

Adiabatic Sidewalls

For adiabatic sidewalls, Frick's analysis predicted a
critical wavenumber corresponding to A,=1. Data from
the two-dimensional model with a 41x41 mesh for the
adiabatic sidewalls case are summarised in Fig. 2, in
which the broken lines denote data taken from Frick's

(1983) Fig. 2 for Ay=0.05, 0.1, 0.2, 0.33 and
infinity (i.e. no sidewalls). The Nusselt numbers
predicted by the two-dimensional model are approx—

imately 27 higher than

by Frick.

the Nusselt numbers obtained
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Fig. 3. Perfectly conducting sidewalls: dependence
of Nuf on Ra. Ay values as marked.

4y=0.1 Ay=0.2
Model |Mesh Ra=10° |Ra=2x10°|Ra=3x10" |[Ra=5x10"
2D 21x21 2.09 3.07 2.04 2.64
41x41 2.06 2.99 2.02 2.60
Plane | 21x11x21 1.90 2.81 1.84 2.39
21x21x21| 2.07 3.00 1.98 2.58
3D 21x11x21| 1.89 2.85 1.82 2.40
21x21x21 | 2.02 3.06 2.01 2.58

Table 1. Adiabatic sidewalls: sample values of Nu
as predicted by the different models.

Also shown are data for Ay=0.05 and 0.1 generated by
omitting the advection tems and the Laplacian
operator portion of the diffusion term in Equ. (27).
These omissions correspond the the assumptions of the
conventional Hele Shaw model for convection in narrow
slots. These data demonstrate that the Hele Shaw
model over-predicts heat transfer for A, >0.05, an
observation which is also supported by ca%culations
presented by Mallinson (1986) for air filled slots
heated from the side.

Table 1 summarises the results for selected parameter
values using the plane flow and three-dimensional
models. Generally, the two-dimesnional solutions for
a 21x21 mesh produce 2-3% increases in Nusselt
uumbers referenced to the 41x41 values. The 21x21
two-dimensional Nusselt numbers are within 1.5% of
the three-dimensional results which use the same
cross sectional mesh and 21 y planes. The data for 11
y planes confirm the assertion made above that at
least 21 y planes are requred to ensure adequate
representaltion of the flow field by the
three-dimensional mesh, This  behaviour is also

exhibited by the plane flow solutions.
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These results for adiabatic side walls indicate that
the two-dimensional model can represent the convect-
ion in slot with an accuracy which is commensurate
with that of a three-dimensional model having the
same cross sectional mesh. The differences between
the two-dimensional and three-dimensional results are
less than the errors resulting from cross sectional
truncation errors.

Conducting Sidewalls

For this case Frick's (198%) formula for the critical
wavenumber leads to A,=AgZ Results for Ay=0.05, 0.1
and 0.2 (with A,=0.22, 0.33 and 0.45 respectively)
are presented in Fig. 3. The influence of A, is more
pronounced in this case that it was for  adiabatic
side walls and there is a greater sensitivity to the
differences between the various models. The two
dimensional model under-predicts heat transfer when
compared to the three-dimensional model as does,
generally to a lesser degree, the plane flow model.

As Ra increases beyond the critical value, the rate
of increase of Nu is greater than in the case of
adiabatic walls and is greatest for A, =0.05. The
results for A, =0.05 and A =0.1 show that ¥he differ-
ences between ghe models increase with decreasing Ra.
This suggests that sensitivity of the critical
Rayleigh number to the modelling assumptions could
account for the differences between the Nusselt
numbers” predicted by the three models. The results
for A ,=0.2 show an increasing difference between the
three=dimensional model on the one hand and the
two-dimensional and plane flow models on the other.
Buoyancy generated by gradients of temperature in the
y direction could be responsible for this effect. It
would be difficult to 1isolate the causes of the
observed differences any further without more precise
estimates of the  critical Rayleigh number and
wavenumber.

CONCLUSIONS

Generally, there is favourable agreement between the
two-dimensional model and the more complex models. In
the case of adiabatic sidewalls, the agreement is
commensurate with the accuaracy of the representation
of the cross sectional flow.

In the ‘case of isothermal sidewalls, discrepancies
between the models for small Ay could be caused by
shifts in the critical Rayleigh number: for larger
A., buoyancy effects arising from temperature grad-
ibnts in the y direction may also contribute.

As a final comment, the computer times for the two
dimensional solutions were measured in minutes,
whereas both the plane flow and three-dimensional
solution times were measured in hours.
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NOMENCLATURE

L /Lx, cavity aspect ratio in y versus x.
Lz/Lx, cavity aspect ratio in z versus x.
y variation for velocity, vorticity and
stream function

= gravitational vector
fiy) = y variation for fluid temperature

= thermal conductivity of the fluid
Lx,Ly,Lz, = dimensions of cavity in x, y and z

<
—
]

directions
Nug = Nusselt number for fluid
Pr V/KE, Prandtl number
Ra = gBgly(T,~T )/(vkg), Rayleigh number
Rapg = RaA?/lZ, Hele-Shaw Rayleigh number
T = temperature
To = temperature of hot boundary at x = 0
B = temperature of cold boundary at x =1
u,v,w = velocity components in x, y and z
directions
u = y averaged velocity in x direction
¥ = velocity vector
w = y averaged velocity in z direction
X VaZ = nondimensional Cartesian coordinates

Greek Symbols

Be = fluid coefficient of thermal expansion
8 = (T-T, )/(To-T;), nondimensional temperature
84 = value of at fluid/wall interface
¢ = nondimensional fluid temperature
Bf o = y-averaged deviation of 8¢ from 8y
or = y-averaged value of Of

Ke = thermal diffusivity for the fluid

v = kinematic viscosity
= = reference density
UyW,,0, = x, y and z components of
¥ = vector potential for velocity
i = y-averaged stream function
E = vorticity vector
L :G,55y =% ¥ and z components of vorFicity
Cz = y-averaged value of y vorticity
v? = B ok 3R

2 %2 3zl

X Z



