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ABSTRACT

The Navier-Stokes equations for the laminar, incompressible,
axisymmetric evolution of the breakdown of a columnar vor-
tex in a cylindrical tube are solved using the streamfunction-
vorticity formulation by an explicit finite difference technique.
The use of high spatial and temporal resolution enables a de-
tailed study of the evolution and internal structure of the re-
circulation zone when breakdown occurs. Preliminary results
reveal the growth of a mean two-celled internal structure simi-
lar to that observed experimentally when the breakdown takes
the form of a ‘bubble’.

INTRODUCTION

Vortex breakdown in swirling flows has been the subject of much
attention in the literature since it was first recognized in the tip
vortices of delta winged aircraft (Peckham and Atkinson 1957).
The term vortex breakdown refers to an abrupt change at some
axial station in the character of a columnar vortex. This is
usually observed as a sudden widening of the vortex core, and
is often followed by a stagnation point on the axis and a re-

ion of recirculation. Sarpaka (1971) and Faler and Leibovich
%1977) observed a number of distinctive types of vortex break-
down, however our attention will be directed to the axisymmet-
ric form, apparently the only form for which measurements of
the flow inside the recirculation zone are available (Faler and
Leibovich 1977, Escudier and Keller 1983).

The results of flow visualization experiments of vortex break-
down in tubes has lead to a general consensus (Leibovich 1978)
that to describe vortex breakdown a three-dimensional, time-
dependent Navier-Stokes model, possibly with turbulent pa-
rameterization, is needed. Recently however, Escudier (1984)
observed vortex breakdown of swirling flows in a cylindrical con-
tainer with a rotating endwall to be axisymmetric and steady
over a large range of the governing parameters. Even when
the flow is oscillatory, it was observed to be axisymmetric for
a range of the parameters, and for all the cases reported the
flow was observed to be laminar - turbulence only setting in at
extreme values of the parameters. A feeling was expressed in
that report, as well as in Escudier and Keller (1983) as a result
of experiments in cylindrical tubes, that vortex breakdown is
inherently axisymmetric and that departures from axial sym-
metry result from instabilities not directly associated with the
breakdown process. Hence, in this preliminary investigation,
a laminar, time-dependent, axisymmetric model has been con-
gtructed to examine the structure of the recirculation zone of
a vortex breakdown in a cylindrical tube and compare it with
available experimental observations.

EQUATIONS AND METHOD OF SOLUTION

Vortex breakdown in a tube is modelled by considering a cylin-
drical tube of radius R and length Z. The fluid is incompressible
with a constant kinematic viscosity v, density p and maintained
at a constant temperature. The axisymmetric form of the time-
dependent Navier-Stokes equations in cylindrical co-ordinates
(r,¢,2) with corresponding velocity components (u,v,w) are
employed to describe the evolution of the flow. These are non-
dimensionalized by scaling the lengths with the core radius of
the vortex, §, which Faler and Leibovich (1977) have indicated
is the natural unit of length for the problem; velocities by the
free-stream axial velocity W and pressure by pW? after subtrac-
tion of a reference pressure. Time is scaled by 6/W. The core
Reynolds number is defined as Re = W§ /v, in contrast to the
tube Reynolds number which is usually quoted in experimental

investigations where the diameter of the tube is employed as
the length scale.

The streamfunction-vorticity formulation introduces a stream-
function ¢, where
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component of vorticity is given by
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This formulation leads to the prediction equations for the az-
imuthal components of velocity and vorticity together with the
prognostic equation for the streamfunction from the Navier-
Stokes equations. In conservative form, these are:
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The upstream boundary condition is chosen so as to mimic
the flow field found experimentally in vortex cores. The model
chosen for this study is that of Mager (1972), with which he
conducted an integral analysis of vortex breakdown.

Specifically, for the upstream boundary (z = 0) we have :
u(r)=0, for0<r< R,
(r) = Vr(2—r?), for0<r<t;
W= v/r, for1<r<R,
w(r) =1, for0<r<R.
From these, we have
2
v,b:E andp=0, for0<r<R.

V is the specified azimuthal velocity at the core edge, and is
equal to the circulation around the core after nor-dimension-
alization by 2m6W. The cubic form of v(r) allows for solid-body
type rotation near the core centre and a smooth transition to
irrotational flow at the core edge.

On the axis of symmetry (r = 0), there are no radial motions
or shear stresses and together with continuity we have

v=9Y=95=0, for0<2<Z.

Artificial boundary conditions have to be used at the down-
stream boundary (z = Z). It will be assumed that this bound-
ary will be placed far enough downstream so as to have negli-
gible effect on the evolution of the flow further upstream. To
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this end the condition that axial gradients vanish is imposed.
This is less restrictive than specifying a priori the flow at the
boundary. Care needs to be taken in having a long enough tube
a8 ‘eddies’ are advected downstream in some cases and the ef-
fects of their flow past the downstream boundary are reflected
upstream fo a certain extent. The boundary conditions used

are : 3 . 2%y
v_on_ 3% _

= B 0, for0<r<R.
At the radial boundary (r = R), for this preliminary study,

frictional effects have been ignored, with the following boundary
conditions being implimented

14 2
v=E,¢=~};— and n=0, for0<2z<2.

As an initial condition, the upstream boundary condition is im-
plimented over 0 < z < Z. This then gives a uniform columnar
vortex and satisfies the other boundary conditions.

The system of equations sll)—f] together with the correspond-
ing boundary conditions has been solved by means of a finite-
difference technique using second-order accurate central differ-
encing for the differential equations and second-order one-sided
differencing for the derivative boundary conditions. The time-
marching procedure used is due to Miller and Pearce (1974),
and the generalized cyclic reduction method of Sweet (1974) is
employed to solve the prognostic equation for the streamfunc-
tion.

After a number of trials, it was found that a tube length of
about 40 vortex core radii was needed to ensure that the outflow
boundary conditions did not have any noticible effects on the
evolution of the recirculation zone. A 5: 1 tube to core radius
ratio was used in order to keep blockage effects down. Exper-
imental investigations use similar or smaller ratios. Typically,
the numerical model has shown that as this ratio is increased,
the radius of the recirculation bubble grows larger. The results
presented here are for R = 5 and Z = 40 with 81 grid points
in r and 321 in z, giving a spatial resolution of 26,001 mesh
points on a regular grid. Fine temporal resolution is ensured
by using At = 0.01 whereas the C.F.L. condition for the system
is satisfied by At = 0.085 in the worst case considered.

RESULTS AND DISCUSSION

A completely consistent picture of the flow inside the recircu-
lation zone of an axisymmetric breakdown bubble is lacking.
Previous numerical simulations (eg. Kopecky and Torrance
1973, Grabowski and Berger 1976) failed to simulate significant
features which are generally agreed upon by flow visualization
experiments — the most probable reason for this is poor spa-
tial resolution together with the use of the steady state form of
the governing equations or poor time-marching techniques. To
date, the only other simulation which reveals the ‘two-celled’
structure of the bubble is that of Krause, Shi and Hartwich
(1982). Their calculations however were not carried out for
long enough times to observe the vortex ring shedding phe-
nomenon illustrated in figure 1. Krause et al. %1982) employed
a free-stream radial boundary condition, which was also em-
ployed while testing this model. It was found that the initial
evolution of the recirculation zone was not affected by the ra-
dial boundary conditions, and our results agreed quite well with
those of Krause et al. (1982), who employed an Alternating Di-
rection Implicit method of golution.

The difference between the evolutions in a free-stream and a
tube begin to show when, in a free-stream, the streamlines
near the radial boundary are no longer parallel to that bound-
ary, in which case the recirculation zone tends to grow beyond
the computational domain. The resulting evolution is then no
longer physically valid. The effect of a tube boundary condi-
tion is to limit this radial expansion of the recirculation zone
and thus keep the streamlines near the boundary parallel to
it. This then leads to a periodic shedding of vortex rings from
the downstream end of the bubble, which mimics the periodic
emptying and filling process which is often observed experimen-
tally (Sarpkaya 1971, Faler and Leibovich 1977, Escuclzher and
Keller 1983). An example of this phenomenon is given in figure
1 where a close-up of the evolution of the breakdown bubble
and the near wake is given. A number of significant features,
which are reminisent of descriptions of flow visualizations and
laser-Doppler anemometer (LDA) measurements emerge.
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Fig 1: Isotachs of ¢, v and 5 at indicated times for Re = 240
and V = 1.0 - close-up of the breakdown and near wake region.
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The measurements of Faler and Leibovich (1977) are claimed
to show four stagnation points on the axis — however, the po-
sition of the axis was redefined to achieve this. What they are
probably seeing are saddle points just off the axis with very slow
positive axial flow along the axis. This would then be consistent
with the LDA measurements and flow visualizations of Escud-
ier and Keller {1983{) where they observe the fluid entering the
bubble to emanate from a region much smaller in radius than
that of the vortex core and the bubble itself, and the axial flow
on the axis to be positive. Their streamline map also shows the
‘two-celled’ structure. Bellamy-Knights (1976) concludes from
his flow visualization experiments that there is axial backflow
somewhere in the bubble but not along the axis, and hence that
the backflow must occur over'an annular region of the bubble.
Uchida, Nakamura and Ohsawa (1985) also use LDA and flow
visualization to examine axisymmetric breakdown bubbles and
conclude that a hole in the head part of the bubble is often
observed, that some of the smoke (used to visualize the flow)
is entrained from the rear part of the bubble and reaches the
neighbourhood of this hole and then flows back downstream,
while other smoke particles are sucked directly from this hole
into the interior of the bubble. Further, they observe a dark
region in the center of the bubble which, from LDA measure-
ments, has a positive axial velocity and leads to the hole at the
head part. Faler and Leibovich (1977) observe that the head
of the bubble is relatively steady, whereas the downstream por-
tion is subject to large variations in both axial and azimuthal
velocities.
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Fig 2: Isotachs of ¢, v and p at £ = 90 for Re = 240 and
V = 1.0 - full computational domain.
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All these salient features, from numerous experimental obser-
vations, are well reproduced by the numerical model. The up-
stream portion of the bubble, whether we focus our attention
on the streamlines (the contour levels for the recirculation zones
are linearly spaced, whereas the other contour levels are quadri-
cally spaced from zero on the axis), the azimuthal velocity or
the azimuthal vorticity from figure 1, clearly has minimal tem-
poral variations, whereas the rest of the bubble undergoes large
variations as a result of the shedding process. From examining
the plots of the complete computational domain, an example
of which is given in Figure 2 at time t = 90, we find that once
the vortex ring is completely shed, it is advected downstream
ab approximately the mean axial velocity. Also, from figure 1,
the head of the bubble has very little azimuthal velocity since
it primarily consists of fluid which originates in the axial region
which has low angular momentum. Just inside the bubble the
flow is nearly stagnant.

The cyclic behaviour of the shedding process is also evident
from Figure 1, and in Figure 2 at a later time ¢ = 90 the
gystem has returned essentially to the configuration of ¢ = 60.
A simplified schematic of the shedding process is given in Figure
3. The ‘hole’ refered to by Uchida et al. (1985) is clearly seen,
as is the manner in which the bubble is fed. Clearly, the particle
paths will need to be computed for such an unsteady flow before
a more definitive description of the flow inside the bubble can
be arrived at. However, the echematic diagram summarizes the
main features of the experimental observations.
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Fig 3: Simplified schematic of the shedding process.
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