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ABSTRACT: one studies, with tle aid of the stochastic model
E.D.Q.N.M. the dynamics of a passive scalar (such as temperature in
a slightly heated flow) in three-dimensional isotropic turbulence. Start-
ing initially with energy and temperature spectra concentrated at a low
wave number, without any external forcing, one shows numerically that
the temperature gradient variance diverges with the enstrophy {mean
vorticity variance) at a finite time when the viscosity goes to zero, and
il the Prandtl number remains finite. This critical time ¢, is such that,
in the same conditions, the kinetic energy and the temperature variance
are conserved before ¢, and dissipated at a Bnile rate after ...

For larger times, the kinetic energy and the temperature variance
time decay exponents ap and o are determined with respect to the
infrared behaviour of the initial spectra, and the relative position of the
temperature and velocity integral scales. It is found that the temnpera-
ture integral scale satisfies an analogous Ricliardson law , and that the
temperature decreases the more faster as it is injected in small scales rela-
tively to the energy. It provides an explanation of apparently anomalous
experimental decay results.

1 INTRODUCTION

Three-dimensional turbulence is characterized by a finite kinetic energy
dissipation, due to viscous forces, even when the molecular viscosity
goes to zero. More precisely, it can be shown, on the basis of stochastic
models of the E.D.Q.N.M. (Eddy- Dammped Quasi-Normal Markovian)
“type, that when the velocity fluctuations are confined into the large
scales, there exists a critical time ¢, before which the kinetic energy is
conserved when v — 0 (Andre and Lesieur, 1977). At t. , and still in
the limit of zero viscosity, the enstrophy

D(t) = (1/2) < (Vxu)* > (1-1)
becomes infinite. For times greater than t., the kinetic energy is dissi-
pated at a finite rate e . This can be understood when looking at the
dissipation relation

e=2vD(t) (1-2)

which indicates that ¢ will go to zero with v as far as the enstrophy
remains finite. The critical time ¢. is the time necessary to build up a
k~5/° energy cascade, and depends only on the initial enstrophy.

In this paper it will be shown that the same results hold for the pas-
sive scalar (called here the temperature), whose mean gradient variance
will blow up with the enstrophy. The analysis will parallel that carried
out by Andre and Lesieur (1977) with both an E.D.Q.N.M. numerical
calculation and an exact analytical result using a simplified model called
the Markovian Random Coupling Model (M.R.C.M., Frisch et al., 1974):
the dissipation rate of temperature variance

n = 2xDq(t) (1-3)
will go to zero with x as far as the temperature enstrophy
Du(t) = (1/2) < (V8)® > (1-4)

remains finite.

For t > t., the temperature variance will decay at a finite rate. The
asymptotic time decay laws of kinetic energy and temperature are quite
well understood in that case, where the wave-numbers k;(t) and ku(t)
characterizing respectively the peaks of the kinetic energy and tempera-
ture spectra are of the same order: indeed, assuming sell similar evolving
energy spectra, one has

(1/2) < u* >~ 7" (1-5),

and ap depends on the k — 0 exponent s of the kinetic energy spectrum,
such that

E(k,t) = Cs()k" (k—0) (1-6)

s, which cannot be larger than 4 | is conserved with time (Comte-Bellot
and Clorrsin, 1971, Lesieur and Schertzer, 1978). One finally finds for
the kinetic energy decay.
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(1-7)
with

Cs(t) ~ 7 (1-8)

4 is zero for ¢ < 4, An E.D.Q.N.M. calculation has shown 4 = 0,16 in
the case s = 4, corresponds to ap = 1.38 . It can be shown in the same
way that (Larcheveque et al,, 1980, Herring et al., 1982) that

(1/2) < 6% >~ ™" (1-18)
] 2+ '
n=[(8 +1)—— 1-9
& ( )54—3 1 ( )
where &' is such that
Ea(k) ~ Cuk™ k=0 {1- 10)

Eq(%) being the temperature spectrum. In the same way as for the
energy spectruni, s' is conserved with time and cannot be larger than 4.
4, such that

e Al (1-11)

is zero for s' < 4, and is equal to 0.06 for s = & = 4. In this case aq is
equal to 1,48.

Things are quite different when the scalar is injected initially in
much smaller scales than the kinetic energy. The experiments of Warhaft
and Lumley (1978) and Sreenevasan et al.(1980) showed then that the
temperature variance decayed much quicker. This behaviour will be dis-
cussed both phenomenologically and with the aid of numerical EDQNM
calculations.
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Fig 1: EDQNM calculation of the simultaneous evolution of the veloc-
ity and temperature enstrophies, showing the tendancy to a divergence
at a time of order 5 initial large-eddy-turnover times 1/wv,k(0). The
Prandt! number of the calculation is one, and the initial Reynolds num-
ber v, /vki(0) is 40000.



2 BLOW UP OF THE TEMPERATURE VARIANCE
One considers_the free evolution of an unforced turbulence of kinetic
energy and temperature spectra initially concentrated at a wave-number
ki(0) . As recalled in the introduction, the EDQNM theory leads, for
the enstrophy
+o0
D(t) = [ K2E(k, t)dk

0

(2=1),

to a divergence (when 1 — 0) at a time t,. & 5/v,k:(0) , where v, is the
r.m.s. initial velocity. In these calculations, the initial enstrophy was
1.25[k;(0)vy|? , which gives t. = 5.6D(0)" /2 ., This numerical result
has not been yet demonstrated analytically in the general E.D.Q.N.M.
case, but can be derived for a simplified model (the M.R.C.M.) proposed
by Frisch et al.(1974): it corresponds to a constant triple correlation
relaxation time of the E.D.Q.N.M. theory:

Oy = 6y (2-2)
One then obtains analytically (Andre and Lesieur, 1977) the following
evolution equation for the enstrophy

+o0
-d—}ﬂﬂ— = g@..D(tlz - Zuf K*E(k,t)dk {2-13)
dt 3 &

During the initial phase, and as far as the energy spectrum is raplidly
decreasing in the large k , the viscous term in the r.is. of (2-3) will
tend to O with v. Then the enstrophy will blow up at ¢ = 3/(20,D(0)] .

Actually eq. (2-3) is not correct, because of the unphysical as-
sumption concerning the time @y,,,. A more physical enstrophy evolu-
tion equation can be obtained directly from the Navier-Stokes equations
(Orszag, 1977)

dD(t) _ 98 Hea
—= {E)‘f’s(:)ﬂ(t)”z - 2"_/:, K E(k, t)dk

(2-4)
where |—s(t)] is the velocity skewness factor. If one assumes that s(t) is
constant with time and equal to the values of order 0.4 usually found in
the experiments or in the direct numerical simulations of turbulence, one
finds (when v — 0) a blow up of the enstrophy at t. = (5.9)D(0)" /2 |
close to the above numerical E.D.Q.N.M. value.

Let us consider now the "temperature enstrophy”

Du(t) = Am K*Eu(k, t)dk = ; < (V) > (2-5)

The E.D.Q.N.M. theory leads then to the temperature enstrophy evolu-
tion equation

dDy(t) 4 [t [te .
d't - 5[ [ Ouigp” ¢ Elg) Ev(p)dpdg
il ]

+oo
- 2,:/ K Ey(k, t)dk (2—8)
n
which can be written as, using
4
Buny = ff_ a®E(a,t)|71/2 (2-7)
o
dDy(t) 8 wem
;t( ) iD,.(tw(:)‘/2 - 2nj KA Ey(k, t)dk (2-8)
- ]

If v and & — 0 the conductive term in the r.h.s. of (2-8) will tend
to zero, and the temperature enstrophy will diverge together with the
-enstrophy and at the same time t.. Physically, one can say that the
catastrophic stretching of vortex filaments by turbulence will lead to
singularities for the temperature gradients.

We have performed E.D.Q.N.M. calculations of the evolution of the
kinetic energy and temperature spectra at low viscosity and conductiv-
ity. The numerical methods liave been described in preceeding papers
(Lesieur and Schertzer 1978, Larcheveque et al. 1980 and Herring et al.
1982). Fig 1 shows, for a Prandtl number v /k of one, the strong increase
of the velocity and temperature enstrophies at times (defined here as the
time where the quantity is half its maximum value) respectively equal to
t. = 5.4/vok;(0) for the velocity and t, = 4.35/u,k;(0) for the tempera-
ture. The difference between t, and . seems simply due to the fact that
this is not an inviscid calculation contrary to the analytical predictions
presented above, and one might reasonably expect that both times will
collapse in the limit of zero » and «. conductivity. Another consequence
of the finiteness of € and 7 in the calculation, is that both enstrophies
will decrease after ¢,, due to molecular effects: indeed, since D(t) and
Du(t) are respectively equal to ¢/2 and n/2, one will have e ~ t™"£7 1 /i,
and g~ t7"™ ! /i for t > .. Their maximum will then go to infinity as
respectively ¥~ ! and k™!, For t > t, = £, the kinetic energy and tem-
perature variance will then be dissipated at finite rates € and n, as shows
the calculation presented in Fig 2. We have checked that the results are
not significantly different at small and large Prandtl numbers,

A third event will happen at t., that is the simultaneous appear-
ance of a k™ %/> inertial kinetic energy spectrum and of a k=%/2 iner-
tial convective temperature spectrum, which is shown on Fig 3 (for a
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Fig 2: Time evolution of kinetic energy and temperature half variances,
in the same calculation as in Fig 1

Prandtl number of 1): before ¢,, the temperature spectrum spreads out
towards larger and larger wave-numbers; at ¢ = 4.6/v,k;(0) the iner-
tial convective subrange starts to show off, and is completely established
at t = 5.1/uyk;(0). For times larger than t. , and since the conductive
scales have been reached, the temperature spectrum will decay self- sim-
ilarly (see the next section). Fig 4 shows the temperature spectrum for
a Prandtl number Pr=0.1 and Pr=10. One can remark in particular the
formation of the k=! Batchelor’s viscous convective range in the case
Pr=10.

3 PHENOMENOLOGY OF THE TEMPERATURE DECAY
The following analysis holds for t > .., when the kinetic energy and tem-
perature spectra decay sell-similarly, and whatever the value ( greater
than 1) of ka(t)/ki(t). We assume that the kinetic energy spectrum de-
cays as described in the section 2, with a non zero value for « in the
only case s = 4. The temperature spectrum will be assumed to peak
at a wave-number kqy(t) located in the kinetic energy spectrum k= %/
inertial range. The particular case of ky of the order of k; will allow to
recover the temperature variance decay laws of section 1. We assume
that Eu(k,t) is given by

Eo(k,t) = A g E(k,t) for k> ku(t) 3-1)

En(k,t) = C.(t) k" for k < ka(t) (3-2)

The justification of (3-1) comes from an inertial-convective range as-
sumption for the temperature spectrum. We still have

dc..(t) _ : iy
o =0 for s <4 (3-3)
and for 5’ =4
=N _ Ey
dcattyies [ 1B Bl it (3-4)
ke

which come from a "non local” expansion of the EDQNM temnperature
transfer term, following techniques described in Lesieur and Schertzer
(1978).

Let us first consider the temperature dissipation rate n of the order
of (1/2) < 6% > divided by a characteristic dynamical time at scales of
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Figure 3: evolution ofthe temperature spectrum in the preceeding cal-
culation, showing the appearance of the inertial-convective range be-
tween the times 4.6 and 5.1 initial large-eddy-turnover times.
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Fig 4: Evolution in time of the temperature spectrum for Prandlt nuin-
bers of 0.1 (Fig 4 a) and 10 (Fig 4 b).

order Iy . The latter scale is the temperature integral scale, of the order
of kj !, but which we are going to define more precisely. The local time
at ly is Iy fve, where vy is a velocity characteristic of eddies of size l,,
that is (ely)!/® . Hence one obtains

p =< 6? > 20 (3-15)

In the same way, the well known relationship ¢ =< u® >%/2 /I can be
written as

e=<u® s 2R (3—8)

Let us define instantaneous kinetic energy and temperature decay expo-
nents o'z (t) and o (t) by

ld<y?> €
! = =2 3-7
oz(t) 2 dLogt 2 <u® > ( )
. 1d<6?> n
e . 3-8
e(t) 2 dLogt 2':< 62 > ( )
which yields o)
ay(t 2/3
20 _ o /e (3-9)
O'E’-(C) l ) o H

which iniplies that the temperature decays the more faster as the relative
ratio of velocity to temperature integral scales is large. This is in good
agreement with the observations of Warhaft and Lumley (1978). (3-9)
is also valid for the asymptotic exponents oy and ep given in section
1. Since the latter temperature decay law in power of time ¢t~ is only
possible with one value of a4 given by (1-9), which depends itself on
the infrared energy and temperature spectral exponents s and ' |, there
can be only one ratio l/ly corresponding to such a decay: this ratio is
thus equal to [(¢ + 1)/(= + 1)]*/ when [¢,s' < 4] , and to 1.11 when
s =s' = 4. This is in any case very close to one, and fixes what is meant
by the statement that the asymptotic values (1-8) and (1-9) imply that {
and ly are of the same order. Now, if l; is smaller than [ , there cannot be
a power law decay for the temperature: following (3-9), the temperature
decays faster than the kinetic energy, while li(t) catches up with 1(¢) , as
has been shown in Lesieur et al.(1986): eventually, the temperature will
decay following (1-8) and (1-9) when I/ls will have the particular ratio
of order one determined above.

We skip the details of the calculation which is given in Lesieur et
al.(1086). The analytical results are that I, grows whith time following
a Richardson-type law :

(3 - 10)

Lafi L3R
"
2 dt

This result is valid whatever the ratio (greater than one) of I/ly | for
both situations of a stationary (that is artificially maintained by exter-
nal forces injecting energy at k;) or decaying kinetic energy spectrum.
¢ is then either a constant or a decreasing function of time, but the
temperature is always decreasing. Such a Richardson law was, in the
particular case s' = 2, employed by Nelkin and Kerr (1981) to lock at
the same problem of temperature decay. Actually our study generalizes
their study to an arbitrary value of &,

It has to be stressed that in the freely-decaying kinetic energy case,
the velocity integral scale [ follows also a Richardson-type law

1dI? /354
S 1473 3 —
T (3-11)
Finally one obtains
l(t) = EZ—EP“t[:)lt + B 12/3wp/z (3-12)
i
and
< §% >ee | B 4 t12/3)m |~ 3un /(2= up) (3—-12)
This result is equivalent to
S L L (3-13)

and expresses the fact that the temperature variance decays much faster
than the kinetic energy if the temperature integral scale increases rapidly.
We have performed an EDQNM calculation in that case, where the tem-
perature is initially introduced in the kinetic energy inertial range, with
(o) /la(to) = 362. Figure 5 shows the self-similar decay of the spectra
obtained in this calculation for s = &' = 4. The Richardson law is well
verified for a Prandtl number of 1, whith a numerical constant (arising
in the r.hs. of (3-10)) equal to 0.24. This value is not far from the value
0.22 found by Herring et al.(1982). We have also evaluated this constant
for a Prandt] number of 0.1 and 10 (and for ¢’ = 4) and found an average
value of respectively 0.21 and 0.18.

Fig G shows the evolution with time of the "instantaneous” temper-
ature decay exponent o),(t) , evaluated both in the preceding EDQNM
calculation and using the above analytical result. The agreement is
fairly good. The final value of o, ohtained in this calculation is of 3.8 at
t = 5to, and it seems difficult to push the numerical calculation further,
for the temperature variance has been nearly completely dissipated by
molecular conductivity. However, and if the calculation had been per-
formed with infinite inertial and inertial-convective spectral ranges, o, (1)

would eventually tend towards az , so that the values displayed in Fig 6
represent only a transient evelution of the temperature, and have no uni-
versal character. Such a result is reminiscent of the conclusions obtained
for the statistical predictability problem (Metais and Lesieur, 1986).

4 EDQNM CALCULATIONS AND COMPARISON WITH
EXPERIMENTS

Experiments in the air done by Warhaft and Lumley (1978) and Sreeneva-
san et al.(1980) are a good candidate for comparisons with the above the-
oretical and numerical predictions: a turbulence which is approximately
homogeneous and isotropic is produced in a wind tunnel downstream of
a grid (of mesh size M), and temperature fluctuations are introduced
with the aid of a thin heated array of parallel wires whose mesh size s
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Tig 5: EDQNM calculation of the kinelic energy and temperature spec-
tra, when the temperature is injected at a time t,, in scales much smaller
than ().
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Fig 6: instantaneous temperature decay exponent

We have carried out an EDQNM calculation in conditions close to
these experiments {and with a Prandt] number of one). The values of
the decay exponent < oy > given here is the slope of the experimental
and numerical curves averaged during the period of evolution. At this
moderate Reynolds number our calculation show that the kinetic energy
decays as t7!%%, in good agreement with the t™34 experimental result
of Warhaft and Lumley (1978). The temperature, introduced at ty,
decreases along an approximate slope of -3.5 , close o the experimental
results. It is encouraging to see that the EDQNM spectral equations are
able to handle this experimental situation.

5 CONCLUSION

This paper has dealt only with a passive scalar (the temperature for in-
stance) transported by a three-dimensional isotropic turbulence. When
the kinetic energy and the temperature are injected in the large scales,
we have shown, using the EDQNM approximation or a simplified version
of it, the MRCM, that the temperature enstrophy (characteristic of the
temperature gradients) would blow up witli the enstrophy at a finite time
t. when the viscosity and the diffusivity go to zero (the Prandtl number
remaining finite). At t. appear the inertial and inertial-convective spec-
tra. After t. both spectra evolve self-similarly, and the kinetic energy
and temperature integral scales [ and Iy adjust into a constant ratio close
to one.

In the case where the temperature is introduced in smaller scales
than the velocity, Is follows, like I , a Richardson-type equation, but
catches up with | due to the particular initial conditions. A very simple
phenomenological equation relating the instantaneous temperature de-
cay exponent to [/ly, as well as a non local spectral expansions using the
EDQNM theory, has allowed us to find the general law governing the
temperature decay. This analysis shows that anomalous temperature
decay laws do correspond in fact, at least at high Reynolds and Peclet
numbers, to a transient behaviour necessary for both energy and tem-
perature integral scales to collapse, and for the temperature and kinetic
energy decay exponents to become of the same order.

At moderate Reynolds number, and when the temperature is intro-
duced in the small scales, the EDQNM kinetic energy and temperature
decay predictions are in very good agreement with the experiments. We
believe that the phenomenology of section 3 is still valid at these mod-
erate Reynolds numbers. We think also that higher Reynolds number
experiments are needed in order to confirm the validity of our analysis.
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