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ABSTRACT

For single bubbles and drops, equations have been
formulated to find :

(a) maximum terminal velocity, eq(29)

(b) minimum terminal velocity, eq(30)

(c) probable terminal velocity in the often-

encountered moderately impure systems, eq(26a).

The equations are valid for the whole range of part-
icle Reynolds numbers discussed in the literatue on
bubbles and drops, as well as the range of axi-
symmetric bounds,from those which prevent motion to
those at infinity. A simple derivation defines
the shape of the spherical cap bubble, eq(34).

INTRODUCTION

Dispersions of bubbles and drops in liquids are often
encountered in industrial operations. Quantitative
description is based on knowledge of behaviour of
single particles, yet to-date, rational mechanical
models that quantify rigorously the behaviour of even
single bubbles are limited to asymptotic conditions,
e.g. for terminal velocity, it is assumed that either
the substantial derivative is zero, or that the shear
stress at the interface is zero.

Here, it is intended to provide further explanations
and relations for single fluid particles that can
improve the modelling of dispersions in pgeneral.

From reviews, e.g. Brodkey (1967), Clift et al (1978)
and other work cited in context below, the apparent
state of published knowledge dealing with single
fluid particles is voluminous and not always
unanimous. A brief summary can be as follows :

Significant Parameters

Motion of fluid particles may be affected by the
following parameters : density of fluid particle
phase = Pgs density of continuous liquid phase = pg,
density difference = Ap = [pd - pc|, viscosity of
fluid particle = ¥q» viscosity of continuous liquid.
phase = p_, interfacial tension (surface tension)

= o, "sur%ace viscosity'" = b/D, diameter of vessel

or duct containing the fluid = d, volume of fluid
particle =_V, nominal diameter of fluid particle = D
= (6Vfﬂ)1/3. The surface viscosity b/D is not known
a priori and has value as an explanatory concept only.

The foregoing parameters can be incorporated in
dimensionless groups for more concise presentation of

equations. The groups are :
Mo UfD

Particle Reynolds number = ReD = —, (1)

He
Uf = terminal velocity in free motion

3 My + 2 Mo
Hadamard-Rybczynski factor = FHR = g—E;—;—E—E; (2)

3y +2u + (b/D)

Boussinesq factor = F_ = (3)

B3y, +3u + (b/D)

2
Particle Eotvos number = EoD = éﬁ%_g_ (4)
spg d”
Vessel or duct Eotvos number = Eod = —Eﬁ——— (5)

Bubble Formation

Bubbles are created by various processes, here,
discussion of bubble formation is restricted to the
case of gas injection into liquid.

At low frequency of bubble formation, surface tension,
gravity and buoyancy provide the only significant
forces. Thus with gas orifice diameter do,

-141/3
D= (ﬁdoo (t8pg) ) (6)
With increasing gas flowrate, bubble formation
frequency increases until the bubbles form a bubble
chain. Further increases of gas flowrte result in
larger bubbles which are formed at nearly constant
frequency. A simple bubble chain model (Lehrer,
1971) preicts that at constant gas flowrate Vd from a
single orifice,
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) G G (7)
where Cp is the drag coefficient of the bubble of
size Dy in free motion. Eq.(7) predicts values that
are close to those predicted by models based on
inertia or on viscosity dominance within their
respective range of applicability.

Particle Shape

In a given system, small bubbles and drops are

nearly spherical, those of intermediate size are
labile but appear spheroidal to the unaided human eye.
Large bubbles moving freely into quiescent liquid
tend to be cap-like with a frontal surface of constant
radius R near the pole (Fig.l). The angle 6 which
defines the shape of the cap has an average value of
nearly 50 deg when Rep»200.  The angle 6 increases
sharply with decreasing values of Rey below 200. In
turbulent liquids, large bubbles become irregular in
shape and break up, often with recoalescence.

When confined to move vertically in axisymmetrie
tubes, bubbles whose D-value is of the same order of
magnitude or larger than the tube diameter d have a
convex domed front which merges into an almost
cylindrical frustum.

Particle Motion

The force balance for a single particle in free steady
motion is

2

_ 2o 3
bp g V = CDﬂD e Uf/S = Ap gnD/6 (8)
therefore
1/2
_ hApgD
U, = ( ) (9)
£ 3 Pe CD

It is not certain that all experimental determinations
of terminal velocity report truly free motion.
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For motion of fluid spheres at very low ReD values,
successive arguments have resulted in, using eq's(l)
and (3),
. 2
= L4 Ty - Re

(10)
I Bey vipid sphere

D<l, say

Eq(10) is based on creeping flow around a sphere, and
allowing for full circulation within a fluid spherej—
hindrance to such circulation due to surface effects
and tendency to rigid sphere velocity with d ecreasing
size D, is discussed in texts, e.g. Happel and
Brenner (1965). In a given fluid/fluid system, the
influence of viscosity on particle motion decreases
with increasing particle size. There is a critical
particle size D,.., above which description of
particle motion no longer requires consideration of
viscosities. This diameter at transition from
viscosity-dependent to viscosity-independent motion
can be estimated for both bubbles and drops from
(Lehrer, 1980)

u +u

[ q 1/5
3888 o e T Y4
.= (F/—/——— (—/——) , Eo <6 (11)
{3;15’ i Pe bp 8 uf Dassr

When there are impurities in the liquid, the
transition point is less sharply defined on the U
vs D plot. Transition is not clearly seen when
E5D >6.

oLt
For the viscosity-independent regime of bubble motion,
Mendelson (1967) set velocity Ug in eq (9) equal to
that of a surface wave, the concomitant drag
coefficient is

f

_ B Hey , DD
D~ 3% + Fop)

(12)

[0} crit

Based on conversion of potential to kinetic energy, a
terminal velocity and hence a drag coefficient were
derived for bubbles and drops in the viscosity-
independent regime (Lehrer, 1976). The drag
coefficient is

8 Eop, , DD

-8 D (13)
D 3 (6+ EoD)

C crit

Using eq's (9) and (13), a minimum terminal velocity"
occurs in free motion when (gravity + buoyancy force)
= (surface tension force)

= (drag force), i.e.

3

ngEQH = 4D6 chDchuﬁla , Eo, = 6,

1}

D ~1)1/2

(6a(bpg) (14)
For analysing the rise of large bubbles into
quiescent liquid, Davies and Taylor (1950) postulated
a spherical surface near the apex of the cap-shaped
bubble (Fig. 1), potential flow over this spherical
shape and applicability of the Bernouilli equation
to this tangential flow. Thus with cap radius R,

(9/4) u? sen2p =

up = (2/3) Y2,

2gR (1 - cos 8) (15)

8-0 (16)
Because the bubble has constant shape, the velocity
of the apex is the velocity of the bubble, therefore
eq (16) states the terminal velocity.

In bounded motion of fluid particles, limiting
conditions exist when the equivalent diameter of the
bounding vessel is the only length which is
significant in bubble motion.

In a round tube of diameter d, bubble velocity tends
to zero when (Gibson, 1913)

pcgd =40 d_l

i.e. U=0 when PB dzo_l = Eod<4 (18)
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The frontal shape and the motion of "infinitely
long" gas bubbles in round vertical tubes of diameter
d were investigated by Dumitrescu (1943). The
analysis assumed insignificance of viscosity and
surface tension effects. The resulting value of

rise velocity U was confirmed by experiment and is

1/2

U=0.35 (g d) (19)

Maneri and Mendelson (1968) proposedthat for single

bubbles in round vertical tubes at large Eod rise
velocity U is
U = U, (tanh (0.25 d rly , Eo  + = (20)

At large values of d/D, the motion approaches free
motion and U = U_.. For small values of Eod a more
complex equation was proposed.

DISCUSSION

Drag Coefficient in Free Motion.

Figure 2 shows typical relations between C_ and Re_.
There are four regimes of motion. Also shown are

the physical properties that are significant within
each of the regimes. Not quantifiable in their effect
on motion are contaminants and particle deformation.
Both of these are significant in regime II, causing a
noticeable increase of C_ above the values provided by

eq. (10). Within regimes IIT and IV, eq. (13) holds
for pure fluids; it holds for all fluids in regime
Iv. For regime II, a number of empirical equations

that require testing for Re_ have been proposed.
Regime I, i.e. Re.<l, has been investigated with some
highly viscous liquids and there are few data.

One may consider the following : The lowest values of
eq. (10), i.e. with F_, = F__, vide egs. (2) and (3),
do not appear as experimental data.

The usually higher C_ values are generally ascribed
to surface impurities. An additional argument which
may also help to explain the often-observed spiralling
or zig-zag motion assumes that internal circulation
may be periodic and/or may exist in only part of the
sphere. External drag causes internal circulation
which reduces drag, but the concomitant increased
particle velocity results in higher rate of energy
dissipation. This is an unstable conditien. Hence
a model here is based on periodicity, C. cycling
between values for a rigid sphere and for a fully
circulating sphere. In view of the above argument,

d CD
TR B CD 3 log CD = - Bt + constant ;
B = constant (21)
b = B CD = CD,rigid sphere SRS t=thalf-period’
c.=¢C . 1 )
D D,ciruclating sphere
thus (CD/CD,rigid Sphere) = exp(- Bt). (22)
A mean value of G is that at t = thalf-periodlz ;
the drag coefficient is then
1
= 2
CD B (CD,rigid sphere ?D,circulating sphere) (23)

Eq. (23) pertains teo the viscosity-dependent regime.
Period is of order (D/U),_Yhich from eq's (9) and
(10) is proportional to D =, i.e. rigidity increases
with decreasing D. The detailed equation for the
minimum drag coefficient is, from egs (2),(10),(12)
and (23)

24 FHR

eD,rigid sphere

EoD

+ Ecd)

(24)

8
Ry i = R 3 &

The upper bound of drag coefficient values for fluid
particles is, from inspection of experimental data
and eq. (24)



CD ximum  Re - * % (25)
RS D,rigid sphere
Figures 3 and 4 show typical observed results. There

is considerable scatter in regime II and at the low
Re. end of regime III. Considering the difficulty of
formulating an accurate, quantitative, analytical
description, it is proposed that for the often-met
systems with moderate impurities,

24 FHR

ReD,rigid sphere

EOD
6 + Eop

= &
Gy =

(26)

The equation applies to bubbles and drops.

In regime ITT,eq(26) is close to the correlation for
this regime based on data for pure liguids(Thorsen etal)
The velocities based on egs (24), (25) and (26)
respectively are shown on Figure 3 for bubbles in water

Bubble Motion and Drop Motion in Round Vertical Tubes

estimated
diameter D,

In free motion, terminal velocity U_. is
from physical properties and the bugble
using eqn. (9) and an appropriate value of Cp- Eq(19)
estimates the rise velocity of a bubble in a vertical,
round tube when bubble size D is mear to, or larger

than tube diameter d and when viscosity and inter-
facial tension have negligible effect. Eq. (19) is
independent of bubble size D and it should be used only
within it's range of validity, which is within the
slugflow regime. Published flow maps indicate the
conditions for slugflow, but there are discrepancies
between flowmaps (Clark and Flemmer, 1985). Models
that are valid for the whole range of flow conditions
are preferable. Maneri and Mendelson (1968) proposed
eq. (20) for large Eod, for small Eod, they proposed

a more complicated equation.

Here, an equation is proposed that is simple, satisfies
eq's (17) and (18) and reduces to eq. (19) at the
appropriate conditions. The equation is :

2

Ap g d i

d 1 1 c
U= Uf (tanh (ﬁ (E - ES;)) Y s Eod = o >4

(27}

Then, the drag coefficient in eq(5) can be revised to
provide a comprehensive equation for terminal velocity
of a single particle, thus

1

, d >(£'_UJ2

w2 = 4opgD
bpeg

(28)
2B, Sp g

, i.e. Eod>d

and the comprehensive drag coefficient C
eq. (24), and detailing all parameters in’

is, using
eq's(29)and

(30), 2
432 Bud + Zuc
%D, d, mintmim S G )t
e P, g D Ha He
8 Apg Dzo—l ]
3(6 + apg Dzu _IU
p
d ;1 a e
Xtant @ 2 - —2yy | 7, (29)
D 4 A d2
§ PE
Similarly, using eq. (%5),
432 p -1
CD d,maximum i & %] tanh(% (% B ° ZJ{J ’
e o bpg D J Apg d
: A (30)
and (26),
c =% 24 F[‘[R . EoD
D,d R o 6 +
probable eD,rlgld zphﬁre - EOD
tanh (5 (Z = E?; ) ) (26a)

Figure 4 illustrates the accuracy of eq. (26a).

389

Lehrer

The Shape of Spherical Cap Bubbles

The motion of spherical cap bubbles has been
described successfully by using the equations for
ideal flow around a sphere and the relation

P v2/2 + pgz = constant (31)

(Davies and Taylor, 1950)

Conditions included axisymmetric flow of an inviscid
liquid aleng streamlines in the 8-direction only when
8>0, uniform pressure in the bubble and therefore at
the gas/liquid inte¥ace as implied by eq. (30) and a
spherical surface with radius R in the vicinity of

] 0. If it assumed thatthe constant radius R exists
over the whole frontal surface (Fig. 1), the equations
of motion (e.g. Bird et al, 1962)are along the inter-
face at R -

2
Vg
" g = gcos 8 (32)
v, d v
§§ 3 2 = g sin @ (33)
vy = 0 at & = 0, then from eq's (32) and (33),
vs = 2gR(1 - cos 6) = g R cos 0 (34)
cos 8 = 2/3, 8 = 48.10° (35)

In a review, Wegener and Parlange (1973) report mean
values of & = 48" for values of Re. near 20,000, and
8 = 50° for values of ReD above 208. For 6 = !.8_]_90,
the ratio D/R = 0.84. Terminal velocity predictions
are also in very good agreement with reported
observed values.

p
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N

Fig. 1. Spherical cap bubble.
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Fig. 2: Fluid padicles, typical CD vs RED relations.
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NOMENCLATURE

(Any consistent system of units)

b = contaminant flow, eq(2), Mt_l

CD = dragcoefficient of particle in free motion

CD,d— drag coefficient of fluid particle

d = vessel diameter, L

D = particle diameter, eq(6),

Eo, = vessel Eotvos number, eq(5), L

Eo, = particle Eotvos number, eq(4)

FB = Boussinesq factor, eq(3)

FHR =  Hadamard-Rybczynski factor, eq(2) -

g = gravity acceleration, Lt

R = radius of spherical cap R

Re, = particle Reynolds number

= terminal velocity of fluid particle, Lt-l

Uf = terminal velocity of particle in free mgzion
Lt

v = velocity, Lt71

V = volume of particle L3

Vdr = volume flowrate of dispersed phase L:,'t_1

z = vertical distance, L

Ao = difference

8 = angle

i = viscosity, ML“ltw1

p = density, ML-3

o] = surface tension, Mt-z

Subscripts
= continuous phase

= dispersed phase ,-except Eod

at orifice

in 8-direction
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