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ABSTRACT

The structure of fully developed turbulence in a
smooth pipe has been studied in detail for a Reynolds
number of 134,000 (based on centre-line velocity
and pigE radius) at two fixed distances from the
wall (y =70 and 200). By taking Fourier transforms
of the correlations of the longitudinal component
of turbulence, three dimensional power spectral
density functions were obtained with frequency
and longitudinal and transverse wavenumbers k and
k.z as independent variables. The data presented
in this form shows the distribution of turbulence
intensity among waves of different size and
inclination and provides an estimate of the
convection velocity as well as the lifetime of
individual waves. The data reproted cover a wave
size range of about 20 and substantially verify
the similarity hypothesis.

INTRODUCTION

The understanding of the mechanism of turbulence
is fundamental to predicting and improving the
performance of heat and momentum transfer in everyday
engineering situations. Fully developed flow in
a smooth pipe, being one of the simplest cases of
shear flow turbulence, has received much attention
in the past, for example, Favre, Gaviglio & Dumas
(1957), Sabot & Comte-Bellot (1973) and Perry & Abell
(1975), and is the subject of this paper. The
turbulent velocity field in a smooth circular pipe
can be described by two-point space-time correlations

which dinvelve three turbulent velocity components
(u,v,w) with six pair combinations. By assuming
stationarity in x, z and t variables (defined in
Figure 1), there are still five arguments in the
correlation functions: x1-xz z1-2zz, ti1-tz, and yi
and y,. If N is the number of points required to
define a correlation function in any of the four

coordinates (three space and time) then 6N° data
are necessary for a full description of the two-point
correlations of three turbulent velocity components
at each Reynolds number. For N=20, the total number
of data points required amounts to 2 x 107. - It
can thus be seen that description of turbulence
by multi-point space-time correlations would render
the interpretation of these data almost impossible.
Furthermore, the  structural interpretation of
time-delayed correlations and data in the untrans-
formed variables (Ax,Az,At,y;,y;) is difficult.
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Fig.1l:

Pipe coordinates and velocity components.
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By performing measurements of the longitudinal
Ruu(ﬂx, Az = 0, w, y1 = yz) and Lransverse
R~ (Ax=0,Az,w,yi=y,) correlations of the longitudinal
component u of turbulence in narrow frequency bands
and by taking Fourier transforms of the correlation
functions so that power spectral densities are formed
with frequency, w, and longitudinal or transverse
wave-numbers, ky or k,, as the independent variables,
Morrison & Kronauer (1969) successfully demonstrated
that their data may be interpreted in the light
of a stochastic wave model with coordinates as
specified in the wave schematic diagram in Figure
2. By introducing a similarity variable k'y' based
on the wave number k* and the distance y' from the
wall, Morrison & Kronauver (1969) were able to
collapse their turbulence data in wavenumber space.

In particular, the two-dimensional power plots
can be written as
Pt ky) = £y hHawt k) (1)

where f is the 'wave intensity function'

A is the 'wave strength'

k = [k?+ k2] Kt = kv/U_

S -+ 5 2

¥y o= YUT/? w = wy/Up

0 = tan kx/kz

Vv is the kinematic viscosity of the fluid

. is the friction velocity

and superscript + refers to nondimensionalisation

with respect to Vv and UT.

¢ =C/sin®, phase velocity
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Fig. 2: Wave schematic diagram.
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The wave description, if verified to be valid, will
therefore, reduce the massive correlation data to
one 'wave strength function' as a function of two
variables (ky and kz ) and a few auxiliary functions
of one variable (ktyt+) only. This implies all the
properties of turbulence can be summarized in the
power distribuIi_lo_n over the power sheet and the
function of k'y'. The objectives of this study
were to extend the measurements of Morrison &
Kronauer (19689) by obtaining new three-dimensional
spectra at y =70 and y+=200, both for a friction
velocity U; of 0.61 m/s and to examine evidence
of the structural similarity of turbulence in pipe
flow.

EXPERIMENTAL CONDITIONS

Correlations R (ﬂx+, Az+ltu+) of the longitudinal
component of urbulence u im a smooth pipe of
diameter 254 mm and length 14.675 m were generated
simultaneously in seven narrow frequency bands at
two fixed distances from the wall, namely, y =70
and 200, by wusing an automated data acquisition
system which jointly varied the longitudinal and
transverse separations of two hot-wire probes
operated in constant temperature mode. For
simglicity_l_ R u( Ax+, Az+|cu+} will be written as
R{x" ;0% | w ) Yiereafter. The pipe flow Reynolds
number was 134,000 (based on centre-line velocity
and pipe radius R) and the centre frequencies of
the bandpass filters were 205,257,325,409,515,650
and 819 Hz corresponding to non-dimensional circular
frequencies w of 0.0536, 0.0672, 0.0850, 0.1070,
0.1374, 0.1700, and 0.2142 respectively. The
measurement stations were located between 52.75
and 56,75 pipe diameters downstream of the pipe
entrance. A total of 1306 and 2551 spatial
sepiraiicnds_ were used for generating the correlation
R(x",z"| w') for y'=70 and 200 respectively. The
corresponding maximum longitudinal separations are
x '=6500 and 10500 and the maximum transverse
separations are z+=572.28(6.65°) End 1382.22(16.;").
The 1longitudinal resolution x  for both y =70
and 200 is 40, corresponding to spatial Nyquist
wavenumber k,+=0.079 whereas the respective
transverse resolutions =z are 30.12 and 25.13,
corresponding to k,*=0,10 and 0.125.

By taking Fourier transforms of the correlations,
power spectral density functions &(k_*,k_*, wt) were
obtained with frequency w® and 1ldngitudinal and
transverse wavenumbers, k_t and k', as independent
variables. % %
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CORRELATLONS AND SPECTRAL DENSITY RESULTS

The Ilongituginal correlation results R(x+,0|w+)
for four different frequencies w' at y =70 and y =200
are displayed in Figure 3 (a) and (b) respectively.
The results show the same trend as those reported
by Morrison & Kronauer (1969). Contours for power
spectral density functionﬁ are presented in the
form kytk, ¥ ®(kyt ,k,*, w ), hereafter denoted as
P(kx+,kz+,bj+), with typical plots being shown in
Figur$ 4(a) and (b) for y =70 and 200, both being
for w'=0.2142,

It is obvious from Figure 4 that the longitudina
wavenumber ky" is constrained by the frequency w
which has virtually no effect on the transverse
wavenumber k,¥. In order to illustrate the general
effects, of frequency w' and the distance of the
wall y  on the power spectra, the spectral peaks
for various w' are plotted in Figure 5. Lines of
constant wave size k= and constant wave angle o
are also indicated. The lines of best fit to the
data,+with correlation coefficient better than 0.97,
for y'=70 and 200 are given respectively by

kT = 0.0052 + 1.47 kx+ (2a)

=
1]

0.0029 + 1.16 kx+ (2b)

The slopes of the two lines are in the ratio of
1.27 which compares well with the ratio log 200/log
70. It is evident that at a given distance from
the wall, the spectral peak moves from a smaller
wave angle at lower frequency to a larger wave angle
at higher frequency. Clearly there is a constraint
with a, wave model hypothesis on the minimum size
of k, = 2 m/RY = 0.00126 but there is no such
constraint on k, . Therefore it must imply that
as the wave size component sampled at a particular
w' and y is increased there is more 4 component
in u, (Fig. 2). For a given w', the spectral peak

at y = 200 is associated with a wave of larger
size and larger wave angle than at y'=70. Furthermore,
for a given w', waves of the smaller size that

exist at y+=70 do not extend to y =200.
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Fig. 3: Longitudinal correlation for (a) y¥=70 and (b) y*= 200.
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Fig. 5: Locus of spectral peaks.

(Symbols same as in Fig. 8.)

STRUCTURAL SIMILARITY OF TURBULENCE

The basic principles of the similarity hypothesis
are listed as follows:

(i) There is only one characteristic 1$ngth scale,
that is, distance from the wall, y'.

(ii) There is only one characteristic time scale,
T, that is (dU'/dy")=!. Because of the
logarithmig diitribution of the mean
velocity U, T" is proportional to y .

(iii) Absolute velocity is irrelevant and only

velocity relative to the local velocity ut

is relevant.

As a result of principle (iii), the experimental
data will be examined for structural similarity
ina coordinate system with no relative motion, that
is, a coordinate system moving with the average
local speed U+(y+). Consider a  two dimensional
power spectrum as a function of w' and k, . Then
(.f_\.m+)_1 associated with each k, can be interpreted
as the typical lifetime for a disturbance of that
size, In a coordinate system with no relative
motion, this is expressed as

(3)

bwt = ot - Ut
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Power spectral density contours for w'=0,2142.
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for various a.

Tf (Aw+T*is normalized by the local time scale T+,

then from principle (ii) above, (Aw )T must be
proportional to y'Aw’ and for similarity to be+vilid,
this must be a function of k 'y and k, y" or
alternatively, k'y' and o, Egr a three dimensional
spectral function P(kx y kz , w'). That is, we
must have,

AR S CSRN SAS I { SR (4)
Substituting equation (3) into equation (4), we
get

+ + + o+

¢’ - U =y’ @) (5)

X
- +o +

where C_" = w /k_".
x X
. s e »

Convection velocity C, as a function of o can be

determined from the ridge line of the power spectral
density contours as shown in Figure 4 and are plotted

as [C,” - U"] against k'y" for various « as shown
in Figure 6.
For small o, there is some scatter in the data;

however, within the limits of experimental accuracy,
the results are independent of y' and collapse very
well for a given «, thus supporting the similarity
hypothesis. According to the geometrically similar
wave model of Morrison & Kronauer (1969), Cy matches
the mean fluid velocity at a certain y' so that

¢,y )-UT(yo )= 5.756 Tog (KA (6)

Here yu+ is the distance to the wall where the data

are taken.
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Fquation (6) is a subset of fquntion (5) and is
plotted in Figure 6 for k'yo =0.6 for comparison
with the present data. The model of Morrison &

Kronauer (1969) agrees very well with the data for
small wave angles such as a=10° but is not adequate
to describe the data for large wave angles.
Another way of examining similarity is to extact
from the data information about Aw' in the light
of equation (4). This can be found by measuring
the full wi_‘g_lth between the half-power points in
the ( +, k,") plot of the spectral Function P(k_~,
kz ,,w ) in the ky direction, the half-width hefng
Aky .  Assuming the spectral sheet is thip and very
closely aligned with the locus w =k U+, we can
deduce Aw' from the power spectral denxsity contours
(Fig. 4) by using the following relationship:

Am+=ﬂkx+(m+/kx+) =~ LI+{yu+)Akx+ 1)
By the+saé[ne arguments used in deducing aquation
(4), yo AU must be 2 £uncticn of k'y" and o only.
['igure 7 shows yo AW plotted against k'y' for

three wave angles a@. For each o, although there
is some scatter, the data at y =70 and 200 collapse
onto a straight line as predicted by the similarity

hypothesis.
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(Symbols same as in Fig. 6.)

In principle, similarity should apply equally well
tg the two dimensional spectral function P(kx+.
©»') as obtained by Morrison & Kronauer (1969) and
the three dimensional spectral function P(k ",k ' ,w )
as obtained here, provided that spectral Erunfatieon
cffects due to minimum and maximum k' are not
important, or that Reynolds number effects are not
significant if data for different Reynolds numbers
are compared. To enable a comparison with the data
of Morrison & Kronauver (19691. t?_ee _Ehree dimensional
spectral function data P(k_",k_",w ) obtained here
are integrated over k to Xgive’ the two dimensional
spectral function P(vk +,m+) from which 2y, Au+
is extracted and plottecr( for y+=70 and y+=200 against
k "y" in Fig. 8. The agreement with the data of
Hérrigoi &. Kronauer (1969) which only extend up
to kx y =1 is encouraging.
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Fig. 8: Variation of 2y,*Awt with k *yt,

CONCLUSIONS
Three dimensional power spectral density contours
have been presented for y+=?0 and 200 and the
convection velocity results when reduced in a
coordinate system moving with the average local
speed have been shown to be a function of k'y' and
@ only. The geometrically-similar wave model of
Morrison & Kronauer (1969) has been shown to be

valid for small wave angles+o_111y. An estimate of
the structural lifetime (Aw ) ! of turbulence has
been obtained from the spectral sheet thicknes
and when normalised by the local time scale T
cgl}_apses onto a straight line in a plot against
k'y' as independent variable for a given g. All
these results substantiate the similarity hypothesis.
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