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ABSTRACT
We present the results of several numerical
simulations of the incompressible Euler eguations

which describe the nonlinear dynamics of an infinite

shear layer in an unbounded inviscid fluid. The flow
is subject to streamwise periodic verticity
perturbations and its evolution is formulated within
the vortex-dynamic framework as an initial value
problem for the vorticity field. Specific examples
illustrate the interaction of the first subharmonic
with the fundamental perturbation in the infinite

Reynolds number limit, In one example a background
strain which stretches the wvortex lines is added in
order to simulate the dynamics of a stretched shear
layer. This is found to inhibit the interaction of
the subharmonic with the rolled-up vortex cores.

INTRODUCTION
In the past few years increased experimental and
theoretical effort has been placed on the description
of coherent structure eof turbulent flows.

Interpretations of phenomena observed in controlled

laboratory experiments (e.g. Jimenez et al (1985)) and
in detailed numerical simulations (e.g. Acton (1976))
are often cast in terms of typical vorticity
distributions which interact through nonlinear
instability mechanisms. In recent work Corcos, Lin

and Sherman (Corcos & Sherman (1984), Corcos & Lin
(1984), Lin & Corcos (1984)) propose a model of the
shear layer in its early stages of transition to a
fully three-dimensional turbulent flow, This model
describes the layer evolution through a heirachy of
primitive deterministic fluid motions with each lewvel
characterized by a specific vorticity distribution
evolving within the ambient strain environment
provided by the other scales of motion,

The first order motion is the much studied nominally
two-dimensional nonlinear temporal Kelvin-Helmholtz
instability of the streamwise periodic shear layer

separating two streams of equal and opposite fluid
velocity U/2. This instability 1leads to the well
known shear layer rollup into spanwise vortex cores
connected by nearly flat, thin braids of spanwise
vorticity. The concentration of vorticity due to
rollup is temporary. Experimental and numerical
evidence (e.g. Winant and Browand (1974), Corcos &
Sherman (1984)) indicates that the spanwise vortices
further amalgamate into larger, more distant wvortex
cores and that this amalgamation is preferentially a
two-dimensional process. A two-dimensional simulation
may then provide a reasonable description of the first
order flow. g

The second order motion arises from the growth of a
three-dimensional instability upon the time dependent
base flow (i.e. first order motions). In the braid
region this three-dimensional instability (possibly
the '"translative" instability of Pierrehumbert &
widnall (1982)) produces an array of flat, counter-
rotating streamwise vortices whose axes are locally
tangential to the braid. Lin & Corcos (1984) studied
these secondary streamwise vortices for moderate
Reynolds numbers using a quasi-two-dimensional
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prototype flow which included an imposed plane
stretching strain to model the induced velocity midway
between spanwise vortices.

Pullin & Jacobs (1986) wused the method of Contour
Dynamics (Zabusky et al (1979)) to calculate the
evolution of the secondary streamwise vortices in the
infinite Reynolds number (Re ==) limit. They found
that initially elliptic distributions of streamwise
vorticity collapse into compact, nearly axisymmetric
cores surrounded by spiral arms. For ellipses of very

high aspect ratio however, a Kelvin-Helmholtz type
instability preoduced strings of small vortex cores
embedded within the stretching strain field. This

fine structure of the secondary vortices forms the
basis for the higher order motions of the Corcos-Lin-
Sherman model and suggests a possible dynamical
mechanism for the cascade of turbulence energy to the
smaller scales.

We will presently use the Contour Dynamic method to
first study the purely two-dimensional shear layer
evolution (i.e. first order motions). The simulations
illustrate the sensitivity of the layer evolution to
the relative phase of the fundamental perturbation and
its first subharmonic in the nominal limit of Re =
For Re = 0(100) this interaction has been studied by
Patnaik, Corcos & Sherman (1976) using finite
difference methods and Riley & Metcalfe (1980) who
utilized a spectral technique. Results were also
obtained by Acton (1976) wusing the point vortex
technique. With the addition of a plane stretching
strain field we obtain an inviscid model which is
perhaps relevant to fine scale features of the mixing
layer and other unbounded turbulent £lows.

w .,

FORMULATION

We consider the evolution of a cylindrically-symmetric
vorticity field in an inviscid, incompressible fluid
of constant density subject to an externally applied,
spatially uniform strain field of constant strengthy.
Putting Y = 0 models the purely two-dimensional first
order motions. Figure 1 shows a conceptual view of
the flow model. A nonuniform vorticity £ield with
only one compeonent of vorticity, ®,, is approximated
by a piecewise constant distribution in which regions
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Secticnal view of a periodic shear layer
embedded in a plane stretching strain field.

Figure 1.



JACOBS & PULLIN

Ry, j =1 ... M, contain uniform vorticity vy, The
region Rj, bounded by contours Cj and Cj+l' extends to
x = *% "and is periodic in x. ~Each C: is described

parametrically by the complex function Cj (e,t). The
four curved streamlines in the (y,z)-plane represent
the externally applied strain aligned with the z-axis
30 as to stretch the vortex lines.

The vortex dynamics maintains the piecewise constant
distribution so that the Cj retain their identity as
material curves defining the w_, discontinuities. In
the Contour Dynamic technique, the Eulerian wvelocity
field lux-iuy] is derived kinematically from ¥, and is
then identified with the particle velocities di*/dt on
the C4. This gives an initial value problem for the
evolution of the C4¢ fully equivalent to the inviscid
Euler equations (see Jacobs & Pullin (1985) and Pullin
& Jacobs (1986)), as

dz 5™ 1
— = j_ij + — exp(rt) x
dt 2T
M+l 5 az o
bl (y5 - ¥u') cot| = (f5 —Ty')| — de’
=1 o A de’
=1 ... M, 119

The first term on the right hand side of (1) is the
velocity in the (x,y)-plane due to the applied strain
field while the summation of integrals is the self-
induction of the vorticity field consisting of M + 1
adjacent regions.

The evolution equation (1) can be nondimensionalized
by setting the period of the layer in the x-direction
A =2 and choosing the total circulation I = 1 in one
period of the computational domain 0 < x < 27, (or
equivalently setting the shear velocity, U = 1/(27) ).
Numerical solutions reported here were obtained by
defining the contours as sets of nodes joined by
parabolic line segments and then approximating the
integrals over the segments with a Gaussian
quadrature. This resulted in a set of ordinary
differential equations for the node coordinates which
was integrated in time using a Runge-Kutta-Fehlberg
method. Invariably the evolution of the vortex
regions produced sufficient local distortion of the C:
to require rediscretization at regular time intervals.
This was done so as to maintain the apriori accuracy
of the contour descriptions. Full details of the
numerical scheme are given in Pullin & Jacobs (1986) .

INITIAL CONDITIONS

The initial conditions specify the initial shape and
position of the C: and the initial values of the wj.
Presently we take M =7 and use the unperturbed
vorticity distribution (the mj and Ys columns of table
1) chosen to model the tanh velocity profile studied
by Michalke (1964). The scaling is such that the
infinitesimal disturbance with the highest growth rate
(k§ = 0.875) has a dimensionless wave number k = 2.
This was determined by performing a linear stability
analysis of the model shear layer. Vorticity
preserving solutions to the Euler eguations were
sought in which the characteristic contour shapes were
described by

ny =¥ + oy elkx gdot 5o o (2)

Use of (2) plus similar expressions for the perturbed
flow potential in the equations of motion then gave an
eigenvalue problem with eigenvalue 0. Figure 2 shows
the normalized growth rates (-93 Max) for the
piecewise constant M = 7 vorticity profile used here,
a uniform vorticity layer M =1 and the continuous
profile uy = U/2 tanh(y) of Michalke. The M =7
distribution provides a close approximation to the
perturbation growth rates of the continuous profile.

The shape of the perturbation is calculated threugh
the eigenvector but the amplitude is indeterminant.

Table 1 : Tnitial Condition.

k=2 k=1

| ws Yj Cr oy oy oy

0 0.0 | ===== | ==——= | ===== | mmmem | o

‘1| 0.100 | 0.365 |-0.248 [-0.339 [-0.194 |-0.652

2 0.234 0.219 |-0.331 |-0.479 |-0.211 [-0.772

3 0.316 0.128 |-0.393 [-0.667 |[-0.206 |=0.883

4 0.364 0.059 |-0.341 [-0.940 [-0.137 |-0.991

5 0.316 |-0.059 0.341 (-0.940 0.137 |-0.991

6 0.234 (-0.128 0.393 [-0.667 0.206 |-0.883

T, 0.100 [-0.219 0.331 (-0.479 0.211 |-0.772

8 0.0 -0.365 0.248 |-0.339 0.194 |-0.652
Table 1 contains the values of @ defining the
perturbation shapes for the most unstable wave

{ké , = 0.875, k = 2) and its first subharmonic. All
simulations reported presently employ this purely two-
mode disturbance, that is, no small scale "turbulent"
perturbation has been introduced. The contours with
the largest perturbation amplitude ] correspond to j
= 4, 5 and are scaled to give le] = 1.0. For the
nonlinear simulations presented in the next section
|| max = 0.05 for both k =1 and k = 2 so that the
simulations commence close to the time that the
perturbations start to interact nonlinearly.

Bs the infinitesimally small perturbations grow
independently, they may be combined with any relative
rhase angle. We choose the fundamental (k =2) to
have a phase ¢ = 0 and allow the subharmonic to take
values ¢ = 0, 7 /4, and W /2. These are labelled as the
pure pairing mode, the pairing/tearing mode and the
pure tearing mode. The fundamental redistributes the
vorticity of the layer producing two slight
accumulations (later to become the spanwise vortex
cores) of vorticity while maintaining I = 1 over the
computational domain. The effect of superposing the
subharmonic depends upcon the value of ¢. Fer ¢ =0
the subharmonic modulates the y-position of the
centroids of the vortex concentrations while keeping
their strengths equal. ¢ =mw/2 modulates the
strengths of the vortex concentrations while
maintaining the centriods undisturbed, and ¢ = 7/4
alters both the strengths and the centroid positions.
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Figure 2. Normalized growth rate for three vorticity
distributions;
(a) single reqion M=l of uniform vorticity,
(b) M=7 regions as defined in table 1,
(c) hyperbolic-tangent velocity profile.
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RESULTS AND DISCUSSION

Four specific simulations of the shear layer are shown
here. Figure 3 (a-c) shows simulations of the purely
two-dimensional first order motions of the mixing
layer while figure 4 shows a calculation that includes
a background strain.

Two-dimensional shear layer

Figure 3(a) (9% = 0) shows the shear layer rollup on
the wavelength of the fundamental perturbation and the
subsequent coalescence of pairs of wvortex cores into
larger, more distantly spaced cores. The similarity
of the large scale features in this figure to those of
figure 7 in Corcos & Sherman (1984) confirms that the
large scale dynamics of the mixing layer are only
weakly dependent wupon Re. The small scale motions
will however depend upon Re. For example, the very
thin braid at t = 90 is almost nonexistent in the Re =

0(100) simulations of Corcos & Sherman (1984) and
Riley & Metcalfe (1980).

Modulation of the size of the initial vortex
concentrations (¢ = n/2) dramatically changes the
subharmonic interaction. The rollup of the wvortex
cores still occurs but simultaneously the smaller

vorticity concentration is "shredded" or "torn" by the
induced strain of the larger vortices located either
side (Moore and Saffman (1975)). Vorticity migrates
along the braids and although the process is much
slower than pairing the simulation indicates that the
interaction tends to redistribute the vorticity into
fever but stronger vortex cores with larger
separation. The inviscid results of figure 3(b)
differ from the moderate Re simulations of Riley &
Metcalfe (1980) in that the roll-up of the fundamental
concentrations here produces very thin braids and
effectively halts

the migration of vorticity to the
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larger cores. For longer simulation times, outside
the range of the present results, the strain of the
larger cores may elongate the smaller cores and
restart the tearing process anew.

A combination of the two modes of
(¢ =7/4) is illustrated in figure 3(c). As the layer
rolls up, shredding induces vorticity to migrate out
of the smaller ccres while the vortex controids begin
to rotate about each other. Although the pairing is
proceeding at a slower rate than in figure 3(a) it is
accelerating (as the distance between the vortex
centriods decreases) and we expect that by t = 90 (out
of the range of present results) the cores will have
coalesced. This dominance of the pairing interaction
over the tearing interaction has previously been noted
in the point vortex simulations of Acton (1976) and
and the spectral calculations of Riley & Metcalfe
(1980) .

interaction

Stretched shear layer

Introduction of a background stretching strain
radically alters the long time eveclution as shown in
figure 4. This calculation has the same initial
conditions as that in figure 3(a) but with the
addition of the plane stretching strain we have a flow
configuration possibly relevant to the tertiary
motions of the mixing layer model. A nondimensional
value of Y = 0.015 corresponds roughly to the local
conditions of the secondary vortex evolution of figure
17 in Pullin & Jacobs (1986), a single frame of which
is reproduced here as figure 5.

Figure 3. Evolution of a periodic two-dimensional
shear layer, M=7. Case (a) pure pairing
interaction ¢=0, (b) pure tearing ¢=m/2,
(c) pairing/tearing ¢=n/4. Times t as
shown.'
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The stretching strain accelerates the initial
rollup by intensifying the vorticity but retards the
pairing interaction by firstly inhibiting the wvortex
cores from rotating about each other and secondly by
reducing the core diameters. A similar result was
obtained for initial conditions ¢ =m /4 (not shown).
This inhibition of pairing may be interpreted in terms
of the inviscid simulations of an isclated pair of
stretched vortex cores (Jacobs & Pullin (1985)). The
flow in the presence of the (y,z)-plane stretching
strain can be shown to be equivalent to a strictly

two-dimensional flow with an applied (x,y)-plane
strain field that, with = this relative  vortex
orientation, separates the vortex centres and inhibits

vortex pairing and/or coalescence.
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Figure 4. Evolution of a periodic shear layer,
v=0.015, ¢=0.
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Figure 5. Evolution of an array of stretched vortices
with alternating circulation. Initial
aspect ratio of ellipse, n/5m=51.7, y=0.1.

CONCLUSIONS

We have used the method of Contour Dynamics to study a
perturbed free shear layer in the Re o limit. The
vortex dynamics of the large scale motions of the
mixing layer appears to be only weakly dependent upon
Reynolds number, at least for small times, as
simulations illustrating the interaction of the first
subharmonic with the fundamental perturbation agree
qualitatively with previous simulations at moderate
Re. Addition of a stretching strain inhibits the
interaction of the subharmonic with the rolled-up
vortex cores.

This work was supported by the Australian Research
Grants Scheme under Grant No. F8315031 I.
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SYMBOLS
u shear velocity
u Eulerian velocity
Y stretching strain strength
t time
w vorticity i
T circulation in the computational domain
L vorticity thickness, UM 5.
Re Reynolds number, U.§,/v

(v = kinematic viscosity)

cartesian coordinates

(1)

complex coordinate, x + iy

region of uniform W, in the (x,y)-plane
contour delineating a discontinuity in w,
contour parameter
vorticity jump across Cp,
wavelength

wave number, 27/}
y-ordinate of the unperturbed contour
y-ordinate of the perturbed contour
complex growth rate, O, + iogj

complex amplitude, @, + iog

primed quantities are integration
variables

* superscript indicates complex conjugate
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