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ABSTRACT

A parabolised method of solving the Navier—Stokes
equations is developed, which does not have the
characteristic limit on the minimum axial step size.
A simple turbulence model is chosen which uses the
concepts of eddy viscosity and mixing length. The
reduced set of equations is capable of predicting
developing and fully developed flow in a concentric
annulus. Wall shear stresses and Reynolds stress
profiles compare well with experimental data.

INTRODUCTION

Annular geometries are used in many important
engineering structures. One example is the nuclear
reactor fuel assembly. Annular test sectiomns are
often used to evaluate the heat transfer performance
of various types of fuel element. Annular flow is
also found in some propulsion systems and in fluid
flow equipment used by the thermal process industry.

Annular flow is additionally interesting because it
might provide insight into the general problem of
fully developed turbulent shear flows. Fully
developed annular flow involves the combination of two
boundary layers (each extending from a wall to,
perhaps, a position of maximum velocity) which, unlike
those that meet at the centre of a pipe or midway
between parallel planes, may have quite different
velocity distribution, shear stress and turbulence
characteristics.

In addition, the two one-dimensional, fully developed
turbulent flows which have been studied in detail -
flow in circular pipes and between parallel planes -
are both limiting cases of annular pipe flow.

Most numerical studies of annular flow use iterative
methods, because they are based on a non-parabolic
system of differential equations ; in this
investigation, however, the axial diffusion term is
deleted as well as other terms which are negligibly
small, so that the Navier—-Stokes equations may be
solved in a reduced form. This method of reducing
equations is only valid when there is a dominant
flow direction and when the flow has minimal
upstream influence.

Fluctuations in turbulence are represented by
Reynolds stress terms which are modelled using mixing
length expressions. The Reynolds stress terms may be
reduced, as are the other terms in the Navier-Stokes
equations, so that the non—elliptic nature of the
algorithm is preserved.

In the present paper, the set of governing equations
is presented and it is shown how they may be reduced
by discarding insignifiant terms. Details of the
numerical grid are given, and a simple turbulence
model 1is described. The method of solving the reduced
equations follows and the results demonstrate how the
algorithm compares with experimental data.
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GOVERNING EQUATIONS

The steady-state momentum equations given (Bird,
Stewart and Lightfoot, 1960) in cylindrical
coordinates (x, r) may be expanded and expressed
non-dimensionally in the absence of swirl as
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where u and v represent the velocity coordinates in
the axial and radial directions, P represents
pressure and Re represents Reynolds number
defined as DyU,/v, where Dy, hydraulic
diameter, is defined as 2 (R,~Ry), R, and
Ry being the outer and inner radii of the
annulus, Uy represents the maximum axial
velocity and v is the kinematic viscosity.

The steady-state equation of continuity is expressed
in cylindrical cordinates for axisymmetric,
incompressible flow as
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If equations (1), (2) and (3) are solved iteratively
on a digital computer, provision must be made to store
all variables at each nodal point, many sweeps being
made over the domain. Large amounts of computer t#me
and storage are required before convergence is
achieved. In the following section it is shown how
these equations may be simplified so that they may be
solved numerically with a single sweep at successive
downstream stations across the domain.

Reduction of the Governing Equation

For flows which have a dominant axial flow direction
and an insignificant upstream influence, the
Navier-Stokes equations may be simplified ; in
practice this applies everywhere except near the
entrance region (Holland and Fletcher, 1985). The
conditions which provide such a simplification may be
stated (Schlichting, 1955).

(a) u %1, (b) L» Y, (c) 6 < Y/2 ...(4)
Y being equal to the radial gap, R,-Rj.
Stated explicitly, these conditions indicate that
(a) the equations are non-dimensionalised such that
the axial velocity assumes a value close to
unity.
the entry length (L) of the annulus far exceeds
the radial gap Y, which is valid except near the
entrance regiom, and
the boundary layer thickness (8) cannot exceed
half of the radial gap, because there 1s a
boundary layer adjacent to each radial boundary.

(b)

(e)

Making an estimate of the order-of-magnitude of each
term we obtain
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By substituting equation (5) into equations (1) and
(2) we can neglect the two second-derivative terms

w.r.t. x (Yaschin et al. 1984), thus producing the

following equations:
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Equatiofs (6), (7) and the continuity equation (3)
constitute a non=-parabolic set : the term u.dv/8x in
(7) introduces a strongly elliptic character into the
equations (Armfield and Fletcher, 1986). To remove
this influence, the radial momentum equation (7) is

again reduced. Let the pressure be split as follows:
P=P +P, . 4(8)
where P; = P(x) , the pressure component in the

axial direction, and
Py = P(r) , the pressure component in the
radial direction in non-swirling flow.

From equation (7),
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An order-of-magnitude estimate yields_Pp = Y/Lz.
From equation (6) P~ 1 and since Y/L° << 1, P may
now be defined as P = Pj, rather than the
definition given by equation (8).
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Equation (7) is then reduced to «ee(10;

Equations (3), (6) and (10) now provide the set of
parabolised governing equatiomns, which will be solved
numerically, together with the appropriate boundary
conditions, i.e.

u (Ry,"x) =v (Ry, x) =0
JIBIT)

u (Ry, x}) =v (R, x) =0
for 0 € x € X, where X is the total axial length
DISCRETISATION SCHEME

A rectangular grid with variable radial and axial
mesh length is used. To resolve the flow adequately
in the viscous sublayer adjacent to either radial
boundary, it is necessary to place several nodes near
the boundary wall. Adjacent nodes are placed so that
the radial spacing increases gradually from the wall
until the radial limit or the mean radius is reached.
For convenience, the radial nodes are symmetrically
disposed about the mean radius of the annulus.

Figure 1 illustrates the computational grid used.
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Fig 1, Finite-difference grid
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The initial limits set for the grid aspect ratio
(Ax/Br), were 2 near the radial wall and 0.5 near the
mean radius : at higher Reynolds numbers, however,
these limits can be stretched to between 10 and 0.1
without any significant change in accuracy, thus
achieving substantial savings in computing time.

In Figure 2, Ax = 0.002 and Ar varied between 0.001
and 0.0046, giving 201 radial nodes ; in Figure 3, on
the other hand, 4x = 0.005 and there were
approximately 70 radial nodes in each of the two
cases.

Radial derivatives are discretised as follows;
the first derivative, 3f/39r becomes

fpr= 50
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and the second derivative 32f/3r2 becomes
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where Arjy) = rj4) = ry.

TURBULENCE

To include the turbulence contribution, the governing
equations are expressed in terms of mean flow and
non-stationary quantities before averaging. The

only extra term arising from the absence of swirl

is the Reynolds stress, u'v', which is added to the
axial momentum equation : the algebraic eddy
viscosity approach allows the shear stress to be
related to the mean velocity component as follows:

u'v' = vx,au_/af

near the outer wall, where v, represents the eddy
viscosity in the axial direction. Near the inner
radial wall,

u'vl = - v,.9u/dr.

A mixing length expression is used in the inner core
region between the two boundary layers, ome adjacent
to each radial wall. The eddy viscosity vy in the

high shear region close to either wall is expressed

as
v (r)12
X )= X
R

where the characteristic length 1y is given as
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The von Karman constant K is 0.405 and A represents
the van Driest damping factor defined as 26/Re.’Ty;
Ty is the wall shear stress, expressed as
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The above expressions for the eddy viscosity and the
mixing length apply to the boundary layer adjacent to
the outer radius R, where R, replaces R. They

apply similarly to the boundary layer adjacent to the
inner radius Ry under the conditions that

(i) the ratio r/R is reversed becoming R/r, and
(11) the logarithmic terms are reversed.

A measure of the sublayer thickness is A, the van
Driest damping factor. On the basis of available
data (Lawn and Elliott, 1971), the value of A for
the inner wall was taken to differ from its value of
26 for the outer wall, in the case of small radius
ratios, according to A = 26 (r*)o'l,where r#
represents the radius ratio, Ri/Ro'



A Clauser—type formulation is used for the lower
stress region of the inner core, giving

Vi = 0.0168U, 8%

where 6% {s the displacement area based on the total
velocity, i.e.

R
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METHOD OF SOLUTION

This is an initial value problem which may be solved
by moving in the downstream direction in a single
sweep : the initial axial velocity profile is assumed
virtually flat at x = o, and computation proceeds at
successive spatial increments until the velocities
are fully developed.

The axial momentum equation (6) is solved initially,
but Aum*l, the step change in the axial
velocity,does not emerge directly on account of the
presence of the pressure term P; by applying a
integrated form of the continuity equation (3) and
separating the pressure term into its axial and
radial components, APPH]l may be evaluated.
Knowledge of ﬁP“+i will then enable Aut*l to be
evaluated from the enlarged tridiagonal system of
equations formed from equation (6). Equation (7) is
discretised to _yield the step change in the radial
velocity, Avitl,

All terms are evaluated at station n + , except u
and v in equation (6), which are projected from
upstream locations : this could introduce an error
for relatively large axial gradients, but as long as
the conditions (see equation (4)) for reducing the
original equations apply, the influence of the first
order approximation 1s small.

RESULTS AND DISCUSSION
Developing Velocity Profile

The predicted variation of mean velocity at
particular radii along the annular duct is compared
with experimental data (Heikal et al., 1977) in
Figure 2, in which Uy represents the bulk mean
velocity : the experimental data are given with a
turbulence promoter.
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Fig 2. Velocity development in an annulus (r* = 0.25)

Holland and Fletcher
Fully Developed Velocity Profile

For non-swirling flow the algorithm is tested
agalnst some results (Brighton and Jones, 1964), for
fully developed turbulent flow in an annulus for a
range of values of the radius ratio r*. By
providing artificial roughness on the outer radial
surface and placing a screen at the inlet to the
test section, fully developed flow was achieved in
an entrance length of 34.5 diameters ; by contrast;,
it was found that fully developed flow in the
numerical solution occurred only after 80 hydraulic
diameters for a radius ratio of 0.562 and 90
diameters at a radius ratio of 0.375.

Results of the comparison of the numerical model
with measurements of mean velocity are shown in
Figure 3: the smaller the radius ratio r*, the more
skewed 1s the velocity distribution than the exact
solution for laminar flow.
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Fig 3. Mean velocity distribution.

The numerical solution approaches the experimental
data, at the radius ratio of 0.562, within about

4% ; agreement is better at the radius ratio of
0.375, but not quite as good at the two lowest ratios
compared, 0.125 and 0.0625; Up represents the
maximum velocity.

Fully Developed Wall Shear Stresses

The ratio of the fully developed shear stresses at
the inner and outer radial walls has been compared
with measured data (Kuzay, 1973) taken in a annulus
of radius ratio 0.556. Kuzay evaluated shear stress
by three methods; the numerical prediction is within
1% of the value obtained by the method which employed
a force balance between the wall and the radius of
zero shear in the fully developed regiom. The
Preston tube method and the Clauser plot technique
yield values which differ from the predicted ratio by
6% and 17.5%, respectively.

Reynolds Stress Profiles

In Figure 4 the Reynolds stress profiles are
compared at two streamwise locations (x/Dy = 32,
44.5) with experimental data (Heikal et al., 1977)
for a radius ratio of 0.25: Ty represents the wall
stress at the outer radial boundary. The predicted
profiles are within the scatter of the experimental
data: in addition, the Reynolds stresses, which
approximate more closely to the fully developed
profile (x/Dy = 44.5), correlate better with the
experimental measurements than those at the other
location (x/Dp = 32).
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CONCLUSIONS
This investigation has shown that:

(1) The algorithm predicts the developing velocity
profile well, within the limits of accuracy of
the experimental data : the divergence between
the algorithm and the data occurs at low
values of x/Dp near the entrance, where the
assumptions allowing the governing equations
to be reduced are invalid.

(11) Fully deveioped velocity profiles are
reasonably well predicted.
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(111) The ratio of wall shear stress levels in fully
developed flow lies fairly close to the measured
quantities.

(iv) The Reynolds stress profiles are closely
predicted for developing flow, except near the
entrance.
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