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ABSTRACT

The stability of a train of nonlinear gravity-
capillary waves on the surface of an ideal
fluid of infinite depth is considered. An ev-
olution equation for the wave envelope is der-
ived from the Zakharov equation. The main
difference from the third-order evolution equ-
ation is, as far as stability isconcerned, the
introduction of a mean flow response. In gen€
eral the mean flow effects for pure capillary
waves are of opposite sign to those of pure
gravity waves. The second-order corrections
to first-order stability properties are shown
to depend on the interaction between the mean
flow and the envelope frequency~-dispersion
term. The results are shown to be in agree-
ment with some recent computations of the full
problem.

INTRODUCTION

The problem of the stability of a wave train on water
has attracted a great deal of interest ever since a
uniform train of gravity waves was shown to be unst-
able in the inevitable presence of side bands (Benjamin
and Feir 1967). Subsequently for small amplitudes the
cubic Schrddinger equation was derived to describe the
evolution of a wave train. Later Dysthe (1979) der-
ived the fourth order evolution equation for pure gra-
vity waves.

In this paper we go a stage further by including the
effects of surface tension and adopting the approach
based on Zakharov's (1968) equation. This leads us to
the general result that dispersion effects, when com-
bined with the mean flow term, provide the second order
corrections to first order stability properties. MWe
are also able to assign roles to all the other terms

in the evolution equation, except one.

FOURTH-ORDER EVOLUTION EQUATION

We consider a spectrum of gravity-capillary waves on
the surface of an ideal fluid of infinite depth. The
free surface is given by z = n(x,t) where x = (x,y) is
the horizontal space vector,z is the vertical coordin-
ate and t is the time. The frequency w is related to
the wavenumber k by the dispersion relation

WP = glkl + k| (1)
where g is the acceleration due to gravity and S is the
surface tension coefficient divided by the density.

If the free surface n(x,t) is written as

k]
n(x,9 = §% wa{?a?ET) {Bk,t)expli(k-x-wl(k)t)}+c.c.)dk
(2)
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where c.c. denotes the complex conjugate, then the
Zakharov integral equation is given by

132 (k) = [ ] Tlakyokpokg 1880y 008Ky 1B (kg )
8(k+ky kp-ky)xexplilu(k)+ulk, ) -ulk,y) -wlks) It} dk, dk,dk,

(3)
The real function T(k,k;,k,,k;) was first given for
free surface gravity-capillary waves by Zakharov (1968).

Equation (3) has been used to analyse the stability of
gravity waves (Crawford et al. 1981, Stiassnie and
Shemer 1984). It is also valid for gravity-capillary
waves if the wave packet is sufficiently narrow,that is
[5f50|<<lkol for some [k |. A broad spectrum may lead

to triad interactions of the sort
wlk) = wlky) + wlky) }
ko= ok

The set of equations (4) does have a solution for grav-
ity-capillary waves, unlike pure gravity waves. This
is precisely the condition that will give a zero denom-
inator in one of the terms of T. But if a narrow spec-
trum of waves is considered then the triad resonance
conditions (4) can not be satisfied.

(4)

Under the assumption of a narrow band of waves centred
on k = Eﬂ = (kD,D), we can write

i(k x-w(k,)t)
= Re{a(i,t)e1 o” % He

nix,t) (5)

We then expand the coefficient T in equation (3) in
terms of the spectral width, retaining terms up to the
third order. In this way an evolution equation is der-

ived correct to fourth order in the amplitude a(x,t)
(Hogan 1985). It is

: 2
21(at+cgax) *Pay, QA - yla|a

. . S L > 2 i
=- - - + + 6
isa 1r-axxx iua~a* 1v|a1 ax a¢x (6)
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The scaling transformation t = t'/u_, (x,y)=(x',y')/k0,

a=a'lk,, b = m0$'/2k§ have been made and the primes
dropped. ¢ represents an induced mean flow which sat-
isfies
v = 0 2<0 (7)
and
&Z = (|a|2)x on z = 0, $Z-+0 as z + -» (8)

In equation (6), ¢ is the group velocity given by
1+3k

+

& =3 (9)

and the other constants (all real) are given in Hogan
(1985).

The parameter k is given by



k = sk (10)

The constants y, u and v are singular at k = 3.
This corresponds to a special case of triad resonance
with 54 52 = tk, known as subharmonic resonance. In

this case an evolution equation is required for the am-
plitude of the wave and its first harmonic. We have ex-
cluded this case from our analysis. (see also
McGoldrick 1970).

The first two terms on the left hand side of equation
(6) show that to second order, the wave envelope moves
with the group velocity. The whole of the left hand
side is the well-known cubic Schridinger equation. From
this equation we know that the stability of a ncg]inear
wavetrain is governed by the terms pa, and y|al%a.

This balance of dispersion and nonlinearity maintains a
resonant quartet of a wave and its sidebands and allows
energy to leak away.

In the next section we consider the effect of the high-
er order terms on the stability of a uniform wave train.

STABILITY OF A NONLINEAR WAVETRAIN

It is straightforward to show that one solution to equ-
ations (6)-(8) is the nonlinear uniform wavetrain given
by

0,

a

(11)

Following Dysthe (1979)
we examine the stability of this solution by taking

2
a, exp(-§1a0yt)

where a, is the wave steepness.

$
a

al
ao(1+a')exp{i(8'—§ag7t)} (12)

We seek solutions for ¢' of the form exp{Kz+i(Ax+uy-0t)}

where Kz = Az + u2 and for a' and @' of the form

exp{i(Ax+uy-0t)}.

On substituting equations (12) into equations (6)-(8) we
find the dispersion relationship for the perturbation
is

2 3 2
Q (cg gvao)k - 3raY - 3suSA

4

7\2

v ¢}
The constant u does not appear in this expression and
the only contribution of the fourth order tﬁrms to the
expression inside the square root sign is A¢/K. This

comes from the mean flow term. This is identical to the

conclusion of Dysthe (1979) in his work on pure gravity
waves.

& %{(pkz+qu2)[pA2+qu2+2ag( (13)

Let us consider perturbations in the propagation, that
is x, direction only. Thus we set y = 0. From (13) we
find that we have instability when

2y }

1
A< [— 7;] a, + ]
and marginal stability occurs at
3
2y 1 -2
15} a + 5 aé]

There is a region of stability given by é% - 1<k<} (see
Hogan 1985).

ag (14)

(15)

The maximum growth rate is given by

3
S - )
6m i l?llén Y [ p} aé}

and this occurs at a wavenumber

Ay = [-

(16)

- (17)

when the real part of Q has the value

3
& B
Re ﬂm = CQ[I p] aD

In each expression (14), (15), (17) and (18) the key el-
element at D(aﬁ) is the term 1/p. This represents a
balance between dispersion and the mean flow response.

3a °
+.—D

ip (18)

We recover Dysthe's (1979) results for pure gravity wav-
es by setting k = 0 and obtain results for pure capil-
lary waves by setting x infinite (see Hogan 1985 for
full details). We have an independent check on our re-
sults for the case y = 0 and very long perturbations,
using the averaged Lagrangian method as shown by
Lighthill (1965, 1967)); see Hogan 1985 for details. We
can also consider general perturbations in the horizont-
al plane by taking u # 0.

These results can be used as an important check on full-
scale computations of gravity-capillary wave instability.
The work of Zhang & Melville (1985) supports our conclu-
sions, see Table 1.

TABLE 1. VALUES OF PERTURBATION WAVENUMBER A CORRESP-
ONDING TO ONSET OF STABILITY OF GRAVITY-CAPILLARY WAVES
OF STEEPNESS Ay 0.05

source k=3 k=7
equation (14) (to D(ao}) 0.036 0.030
equation (14) (to D(ag}) 0.040 0.034
full calculation 0.042 0.037

(Zhang & Melville
1985)

We note that the U(aﬁ) correction is negative for k < }

but positive for « > 3, as reflected in the values of
Table 1. The work of Chen and Saffman (1985) appears to
place an upper limit on a_ and hence on the range of
validity of this approach?

Finally we note that we can derive the fourth order evo-
lution equation in terms of the complex velocity poten-
tial w(x,t) given by

(1) .
2(T+) “x

The resulting equation is similar to equation (6) except

= fa = (19)

Y

that the unassigned term —1ua2a: becomes +1u¢2¢*x. The

reason for such close similarity remains unresolved (see
Hogan (1986) for details).

CONCLUSIONS

(i) We have incorporated surface tension in the fourth
order evolution equation of deep water waves.

(ii) The U(ag) corrections to D(ao) stability properties
are caused by dispersion (paxx) balancing the mean flow
(a&x) to maintain a resonant quartet and hence keep en-
ergy flowing from the main wave into sidebands.
(ii1)
linearity to a([a|2 + $X) to balance the dispersion
A
T yx
_3a
T “xx”
(iv)

(v)  The term 1‘v|a|2ax provides the real U(ag) correct-

For gravity waves the mean flow detunes the non-

For capillary waves we must balance a(%}al2-$x)

Agreement has been found with full computations.

ion to the frequency of very long plane perturbations to
the waveform.



(vi) The term iuaza*x appears to have no role in the
stability calculations.

REFERENCES
Benjamin, T.B. & Feir, J.E. (1967): The disintegration

of wave trains on deep water. Part 1. Theory.
J. Fluid Mech. 27, 417-430.

Chen, B. & Saffman, P.G. (1985): Three-dimensional
stability and bifurcation of capillary and gravity
waves on deep water. Stud.appl.Math. 72, 125-147.

Crawford, D.R., Lake, B.M., Saffman, P.G., & Yuen, H.C.
(1981): Stability of weakly nonlinear deep water
waves in two and three dimensions. J. Fluid Mech.
105, 177-191. Ve S il

Dysthe, K.B. (1979): Note on a modification to the non-
linear Schrbdinger equation for application to deep
water waves. Proc.R.Soc.Lond.A 369, 105-114.

Hogan, S.J. (1985): The fourth order evolution equation

for deep water gravity-capillary waves. Proc.R.Soc.

Lond.A. 402, 359-372.

Hogan, S.J. (1986): The potential form of the fourth
order evolution equation for deep water gravity-
capillary waves. Phys.Fluids (to appear).

Lighthill, M.J. (1965): Contributions to the theory of
waves in non-linear dispersive systems. J.Inst.

Math.Applics 1, 269-306.

Lighthill, M.J. (1967): Some special cases treated by
the Whitham theory. Proc.R.Soc.Lond.A 299, 28-53,

McGoldrick, L.F. (1970): On Wilton's ripples: a
special case of resonant interactions. J. Fluid
Mech. 42, 193-200.

Stiassnie, M. & Shemer, L. (1984); On the modifications
of the Zakharov equation for surface gravity waves.
J. Fluid Mech. 143, 47-67.

Zakharov, V.E. (1968): Stability of periodic waves of
finite amplitude on the surface of a deep fluid.
J.appl.Mech.tech.Phys. 2, 190-194.,

Zhang, J. & Melville, W.K. (1985): On the stability of

gravity-capillary waves (submitted to Phys. Fluids).

180



