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ABSTRACT

From the specifications of various emulsifying and
homogenizing machines, the local power dissipation in
the fine-clearance volume is deduced. Values of the
power digsipated per unit Tass of liquid range from
4.5 x 10° to 4 x 108 W.kg"!. Such high power
dissipations can explain, on the basis of turbulence
theory, the droplet sizes produced in dispersions of
one liquid in another.

If the viscosity of the disperse phase is
appreciable, the droplet sizes are higher than for low
viscosity fluids. This is evaluated quantitatively,
with applications to the homogenization of milk and the
emulsification of bitumen.

INTRODUCTION

The well-known (Kolmogoroff, 1949; Hinze, 1955)
derivation of the equation relating the maximum diameter
of droplets (dpayx) which can resist further dispersion
in a turbulent flow field, is
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T = g (V)
dnax ¢

(1)

Here it is assumed that only the interfacial tension o
of a spherical drop resists the disruptive fluctuation
pressure of the energy-containing turbulence eddies,
which have fluctuation velocities v'. The density of
the continuous phase is pg, but the viscosity of the
phases is not taken into account in eq.(1).

To obtain v', one uses for the energy-containing
eddies the relation (see, for example, Davies (1972)):
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Vi = (Py dpay) (2)
where P, is the local power dissipation per unit mass
of 11qu¥d in the region of droplet break-up, and the
relevant eddy length is taken to be dmay- Substitution
from eq.(2) into eq.(1) gives

= 0.6 , -0.4

dmax =2.3 (d/pc) PM (3)

APPLICATIONS OF EQ.(3)

The practical question raised by this equation is
how to subject the liquid-liquid dispersion to high
enough values of Py to produce values of dyay of a few
micrometers. By studying closely the specifications of
fine-clearance valve homogenizers, a liquid-whistle
emulsifier and a "Hurrell" colloid-mill, Davigs (1985)
obtained_the ty?ica1 figures fgr Py of 4 x 10° W.kg-1,
1.3 x 107 W.kg='. and 4.5 x 10° W.kg-1. respectively:
these values are high because of the fine clearances
between the working surfaces, and the high linear flow
velocities, in equipment of these types. Hence one can
calculate typical dyayx values, though it appears from
this and other studies (Davies, 1986) that the
geometrical factor 2.3 in eq.(3) is an un-necessary
complication, and one can use simply
2

q/dmax

(4)

= e(v')
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B -0.4
and dmax =

(o/0.)%"® Py (5)

Agreement between calculated (eq.(5)) and measured
dmax values is reasonable. It must again be
emphasised that this treatment applies only when pq,
the viscosity of the disperse (i.e. droplet) phase is
negligibly low, of the order ImPa.s.

CALCULATED EFFECTS OF HIGHER

In his original paper, Hinze (1955) suggested that
a term in pgq should strictly be included in eq.(1).
But Hinze's dimensionless group approach to this matter
was criticized by Sleicher (1962) because Hinze's group
did not involve a velocity; and Sleicher correlated his
own data on break-up in pipe flow with the average
overall flow-rate in the pipe. Davies (1985) pointed
out that in general it is v', the turbulent velocity
fluctuation that must be multiplied by pd, so that when
v' is very high (as in valve homogenizers) the effect
of an increase in pq will be more pronounced than when
v' is lower (colloid mills or agitated tanks).

This approach permits a simple fundamental treat-
ment, as in the eq.(2) of Davies (1985). Here the
viscous resistance appropriate to rapid droplet break-
up in the turbulent flow is obtained by adding to the
interfacial resistance pressure the term pg/ts, where
te is the characteristic time of the eddies responsible,
so that eq.(4) becomes
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where o is an arithmetical factor, of the order unfty.

Since t, is the eddy size divided by v', and if
the eddy size can again be equated to dpay, then

(o4 ouy v*)
—
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or, putting v' = (P, dpay) on the right side, one
can solve for dmax’ obtaining

110.6 _ -0.6 -0.4
dmax=(o+audv} Pe PM

(7)

If dpax is the maximum droplet size of the
disperse phase when pgq + 0, then it follows that

d T.67 o op, V'

max d
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This implies that the effect of yny, in different
systems, can be represented by a single straight line
if o is constant: for fine-clearance values, v' is
typically high (e.g. 8 m.s.”'), so the right side of
eq.(8) can be important, even for moderate increases in
uds i.€. dpax 15 predicted to be considerably increased
as pd is increased (other factors being constant in any
given comparison).
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APPLICATIONS OF EQS.(7) AND (8)

In the paper of 1985, Davies suggested that o was
about 0.25. Since that paper was written, the more
refined method (eq.(8)) of finding o has been developed
and the data of Walstra (1974) have been discovered,
recalculated and substituted into eq.(8) to obtain a
more reliable value of a. Though Walstra used 0.2%
aqueous sodium Tauryl sulphate to stabilize his
emulsions, Davies (1985) has shown that for the very
rapid break-up of droplets in fine-clearance equipment,
the eddy forces act so quickly (v Tus) and so strongly
that clean 0il interfaces become exposed in the break-
up ‘process. Accordingly, o is taken as 50 mN.m-1. in
our interpretation of Walstra's results for mixtures of
paraffin oils with hexadecane. The value of o is found
to be between 0.5 to 0.9, with a mean of 0.7 (Davies,
1986). In calculating the group ugq v'/o, the value of
v' appropriate to each dpax at each value of u4, has
been used.

That @ = 0.7 (i.e. not far from unity) indicates
that use of the shear viscosity pq of the dispersed
phase in eq.(6) is realistic: the droplets are suddenly
torn apart by very fast turbulent impulses, rather than
slowly becoming highly elongated.

One application of eq.(7) is to the homogenization
of milk in fine-clearance valve equipment. Droplets of
mean diameter < 1 um are required. With the
appropriate viscosity correction in eq.(7), the
turbulence mechanism can explain the observed findings:
at 409C the fat drops in the milk_are molten, with
uq = 35 mPa.s. With v' =12 m.s™! (corresponding to an
operating_pressure of 140 bar), the term 0.7 ud v' is
295 x 1073 Nm-1. Since ¢ = 15 x 18‘3 N.m-1. for butter
0il against water, (o + 0.7 pugq v' -6 4
(310 x 1073)0.6, and with Py = 4 x 108 W.kg.”! in this
system, eq.(7) gives dpay = 2.7 um. The observed
maximum value is a little lower at 1.8 um, (mean
diameter about 0.4 pm) but under practical operating
conditions the temperature may well be above 40°C, and
so pg (and the calculated dpay would be reduced
accordingly). Thus, with the necessary correction for
ud» the turbulent mechanism does explain milk
homogenization.

Another application is in bitumen emulsification
in Hurrell colloid mills. The viscosity is first
reduced below 200 mPa.s by mixing the bitumen with 3%
of kerosene or diesel oil, followed by heating to about
1359C. For a typical Hurrell colloid mill, v' is
estimated to be 1.6 m.s™! (Davies, 1985); and o is
about 6 mhm.~1.  The value of dpyax calculated without
the viscosity correction (i.e. by eq.(5)) is only 4 pm,
compared with the experimental mean droplet size of
about 5 pm (suggesting a dpax of perhaps 20 ym).
Clearly, therefore, a viscosity correction is important
with such a viscous 0il, though eq.(7) with a = 0.7
leads to a rather high dpay value of 36 um.

Further studies would be of interest, to examine
closely the viscosity of the oil (within the colloid
mi11) and the dmax actually observed at the exit of the
mill.

NOMENCLATURE
ez maximum drop diameter in dispersion, um or m.
damax maximum drop diameter when g is small,
um or m.
PM local power dissipation per unit mass of
liquid in region of dispersion, W.kg.~
ty characteristic eddy time for energy-
containing eddies, s or us.
v' velocity fluctuation of energy-containing

eddies, m.s-1
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Greek letters
o arithmetical factor in eq.(6)

i shear viscosity of disperse phase, Pa.s or mPa.s.
3

Pe density of continuous phase, kg.m ~.
o interfacial tension, N.m.“1 or mN.m'].
Subscripts
[o continuous phase
d disperse phase
e eddy
max maximum
M per unit mass
0 corresponding to ug + 0.
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