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SUMMARY

The one-dimensional formulation used to
mathematically model changes in river bed levels
leads to a time-dependent scalar partial
differential equation describing the sediment
continuity. This scalar equation may be solved by
finite-difference methods. The paper evaluates a
number of currently used finite-difference schemes
in which their linear stability, wave propagation
and truncation error properties are considered. The
results of numerical experiments are given in which
the performances of the various schemes are compared
for a problem involving strong non-linearity and
shock propagation.

1. NOTATION
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General Symbols

vector given by Equation 6

matrix given by Equation 7

velocity of propagation

relative velocity of propagation

Chezy coefficient

numerical damping factor per wave period
sediment transport function

Froude number

acceleration due to gravity

water depth

complex unity v-1; bed slope

wave number

coefficient in Equation 10

exponent in Equation 10

addresses for truncation errors
sediment transport rate per unit width
time

water velocity T
vector given by (u,h,z) ; general variable
Fourier coefficient vector in Equation b
longitudinal distance

river bed level

change in water depth with iteration
time step

distance step

error in d or c

truncation errof coefficient

weighting factor in 6-point scheme
Courant number, c At/Ax

complex amplification factor

ratio of distance step to wave length
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Grid Notation

X abscissa where the time difference of w is
evaluated

Xo x +J Ax

value of w at (x_,t)

W value of w at (xg,t + At)

0
A'w =W

514

= A_%x/A*x
A mesh ratio, At/ax
1.3 Subscripts

X,t,u indicate partial differentiation with respect
to x, t, and u respectively
0 indicates an initial value

Fig. 1 Definition Diagram

2 FORMULATION

With reference to Figure 1, the one-dimensional
formulation describing the bed-level changes in a
unit width channel with moderate Froude number is
given by:

(uh)x =0 (1)

(3u? + gh + gz), + ulul (¢t = 0 (2)
2, Fi5= 0 (3)

s =i F (sreaa) (4)

in which a functional representation for the
sediment transport relation (Eq.4) has been adopted.
These equations were first presented by de Vries
(1959, 1965). A discussion of these equations and
the assumptions on which they are based can be found
in Jansen et al (1979), or Vreugdenhil (1982).

Equations 1 to 4 can be composed as a pure
convection problem by writing

A W, + B W, = 0 (5)

in which A=(0,0 1)7 (6)
u g g

and B=|h u o (7)
fu U<, 0

A wave-like solution to Equation 5 can be written as

(8)

Substitution of Equation 8 into Equation 5 leads to
three eigenvalue solutions cj, cp and c3 which are
the wave propagation or characteristic velocities of
small disturbances. Two of these eigenvalues, ci,
and co, are assocjated with the water wave
disturbances. The third eigenvalue, c3, which

w=Wexp {ik (x - ct)}
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describes the sediment bed disturbances, is given
by:
2,-1

)

_ _ -1
c=cy=uU fu R (4 = E (9)

It can be shown from a more general analysis, in
which the time dependency of u and h is considered,
that the above quasi-steady formulation is
appropriate for F < 0.7, more or less, for most
practical problems.

For the purpose here, the sediment transport
relation is given in the generic form

5=rﬂlln

(10)
in which m is a function of the physical properties
of the sediment (grain size, density, etc). For the
analysis here, it may be regarded to be constant.
Equation 10 corresponds to the Engelund-Hansen
formula for n = 5.

Equation 3 is highly non-linear due to the strong
dependency of sediment transport on velocity. This
non linearity is even stronger for problems
involving longitudinal variations in sediment grain
size, river width, roughness, etc. This non-
linearity gives rise to the special problems in the
application of numerical schemes used to solve
Equations 1 to 4. Spatial variations in the wave
propagation velocity, for example, may lead to the
development of shock features in the bed profile
represented by wave numbers at or near the grid
resolution Timit. Due to numerical errors, the
shock feature will be smeared and secondary waves
may develop, For some finite-difference schemes,
these numerical effects may come to dominate the
physical answer.

A number of currently used finite-difference
schemes, used to solve the sediment continuity
equation, are studied below in terms of their Tinear
and non-Tinear properties. Four of these schemes
stem from the American literature and have not,
apparently, been studied in this way before in the
context of river morphology problems. The present-
ation here is styled after Vreugdenhil (1982).

3 SOLUTION PROCEDURE

When the wave propagation velocity for the bed
disturbances is much smaller than those for the
water flow, it is appropriate to use an alternating
step procedure for the solution of Equations 1 to 4
(Jansen, et al, 1979), namely

Step I: Compute u with Eqs 1 and 2 for known z
Step II: Compute z with Eqs 3 and 4 for known u

Step I is a conventional backwater calculation.
of the well known procedures may be applied. For
the results presented here, a standard step modified
Euler solution procedure has been used with a
convergence criterion of |ah/h| < 0.001.

Any

Step II represents the finite-difference solution of
the sediment continuity equation (Eq.3). Solution
algorithms are presented in the next section.

4, NUMERICAL SCHEMES

Qur attention is now concentrated on the solution of
Equation 3 using finite-difference methods. Six
numerical schemes are investigated below, the
algorithms for which are summarised in Table 1.
grid notation is given in Section 1.

The

The Godunov, Fromm, KUWASER, and HEC-6 schemes are
explicit. The FLUVIAL-11 and 6-point schemes are
implicit. For the implicit schemes an iterative
procedure is used to solve for terms at the t + At
time step.

For the 6-point scheme, Holley et al (1984) use

8 = 0 for the first iteration and g8 = } for
subsequent iterations. An earlier reference to the
6-point scheme can be found in Karim and Kennedy
(1982) in which & = 0 was adopted. Chang and Hill
(1977) have used a Newton-Raphson iteration
procedure to solve the FLUVIAL-11 scheme. For the
analysis here, we have used the Godunov scheme for
the first jteration step for the 6-point and
FLUVIAL-11 schemes. This is convergent for g < L.

References to the KUWASER, HEC-6, and FLUVIAL-11
schemes are to be found in NRC (1982) in which the
results of field study comparisons are reported.

For the latter four schemes summarised in Table 1,
the original references indicate that non-uniform
distance steps are typically used. We have assumed
a constant distance step, however, except in some
instances when discussing the HEC-6 scheme.

TABLE 1: NUMERICAL SCHEMES
NAME ALGORITHM
Godunov Atz = “AA_ys
Fromm Atz = -Ab_yS
-(2/8) {(1-0) a;s - (1-0)A_, s}
5 2
KUWASER Az = -(a/4) (A%s + 3A_%5)
HEC-6 stz = cax (140)7] Ay S

FLUVIAL-11  afz o)

-(a/72) (a_ys + a8

6-point Atz = -(a/2) {o &y s? + (1-8) Ay S}
NAME REFERENCE

Godunov Perdreau and Cunge (1973)

Fromm van Leer (1977), Vreugdenhil (1982)

KUWASER Simons, et al (1979)

HEC-6 Thomas and Prasuhm (1577)

FLUVIAL-11 Chang and Hi11 (1977)

6-point Holley et al (1984)

5. LINEAR PROPERTIES

5.1 Modified Equations

Some insight into the properties of the finite-
difference schemes can be obtained by examining
their linear properties obtained by assuming

¢ = ds/dz = constant. This can be conveniently
examined by taking Taylor series expansions for the
dependent variable z about the centre point for the
scheme. A partial differential equation involving
terms in Iy, Zy, Zips Zyyxs et is then obtained.
For implicit schemes, aééitiona] terms involving
Zigs Zpiyxs Ztyy» ©tC, may also be present.

Using the auto-elimination procedure described by
Warming and Hyett (1974), all second order partial
differential terms involving time can be eliminated.
There then results an equation

A p.p
zt+czx=Z_EQ§_§_z p = 1, 2, ot

(11)
p! at axP

The expression on the right hand side of Equation 11
is the accumulated truncation error. The )  are the
truncation error coefficients. Algebraic
expressions for x» , p = 2, 3, and 4 are given by
Croad (1986) for any general explicit scheme. For
the schemes summarised in Table 1, the expressions



TABLE 2: TRUNCATION ERROR COEFFICIENTS

CROAD

SCHEME M A, Ay Ay

Godunov 0 a(1-0) -a(a-1)(20-1) —o{0-1){60° - 6o + 1)

Fromm 0 0 t0(1-0)(1-20) -30(1-0)(0% - o + 1)

KUWASER 0 ofig) Zo(1-3, g+ 20%) o(3 - 420 + 60° - 60°)

HEC-6 - -20(1-7+20)  -20(8¢% + 6(1-r)o +(1+3)(1+2)"1}  -20(480° + 48(1-r)o? +8(1+c3)(1+z) Lo
+6{1—c)20 + (1—;)(1+c)2}

FLUVIAL-11 0 o -a(1+4 o) o(1+30%)

6-point 0 (26-1)02 -0-(2-60+68%)0° -202(1-268){2+3(1-20 + 262)%}

for x up to fourth order differential terms are
summarised in Table 2. Truncation error
coefficients for a different set of numerical
schemes are given in Vreugdenhil (1982).

5.2 Consistency

The finite-difference scheme must converge to the
original differential equation as the distance and
time steps vanish (Ax, At + 0). This is called the
consistency requirement. Comparing Equations 3 and
11, the consistency requirements is achieved if Ay

= 0., Only the HEC-6 scheme does not meet this
requirement. Consequently simulations involving the
HEC-6 scheme will contain errors which have the same
order of magnitude as the solution.

5.3 Linear Stability

In order to be stable, a finite-difference scheme
must be dissipative, i.e. the wave amplitudes must
not grow with time. Therefore for first order
accurate schemes, it is required that xp > 0. This
is the Hirt (1968) heuristic stability condition.
This has been generalised for higher order
consistent schemes by Warming and Hyett (1974) to

(-1)77 2. >0 (12)

2r
in which r is a natural number such that r
corresponds to the order of consistency. Based on
Equation 12, the stability limits for the various
schemes can be summarised as:

Godunov, Fromm, o < 1
"KUWASER, o < %

HEC-6, o < % (g = 1)
FLUVIAL-11, any value of o
6-point, 6 > %, any value of «

Formally the 6-point scheme, as implemented by
Holley et al (1984), is unconditionally unstable due
to the explicit first iteration solution step. In
practice, however, convergence is often still
obtained for o < 1.

For the explicit schemes, ¢ < 1 is the well known
Courant-Friedrichs-Lewy (CFL) condition. For the
HEC-6 and KUWASER schemes, more stringent stability
requirements apply. For the HEC-6 scheme, it would
be impractical to achieve formal stability in a real
problem since there will be locations where ¢ < 1.

Formally, the stability condition given by Equation
12 applies to solutions represented by small wave
numbers (i.e. smooth solutions). For well cond-
itioned schemes it gives an excellent guideline for
stability even under highly non-linear conditions.

Other stability criteria compared to Equation 12
(e.g. the von Neumann condition may be applied.
Sometimes these will lead to different stability

limits. The treatment of the boundaries may also
govern the stability of the scheme.

5.4 Shock Wave Propagation

Vreugdenhil (1969) has demonstrated that the amount
of smoothing over a shock region, and the assoc-
jation of secondary waves with the shock, depends on
the truncation error of the numerical scheme. 0dd
order truncation errors (Al, ) ...) lead to phase
shift and even order truncation errors (X, M, ...)
lead to amplitude changes in the solution.

Schemes which are first order accurate, and in which
the kp truncation errors predominate, exhibit a
large amount of smearing in the presence of a shock
front and secondary wave development tends to be
suppressed. As iz + 0, the secondary waves
associated with ‘the A3 truncation errors begin to
predominate.

The relative magnitudes of A,, Ay, and A4 for the
various schemes can be seen in Figure 2. For the
Fromm scheme, %» = 0 and dissipation is achieved
through the Ag.term. The 6-point scheme shows large
first order errors for o + 1.

The Godunov and Fromm schemes have very small A3
terms which pass through zero as o = 1. These
schemes are therefore referred to as zero-average-
phase-error schemes. The remaining schemes exhibit

N Godunov
B 2 " Fromm ==-ss3nim7=r
s _/// KUWASER s
L ///' HEC-6 —--— E=15
! ELUMIAL:A =~ ——=%

6-point —— 0=055

0 05 0 05 1

Fig. 2 Truncation Error Coefficients
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large odd-order truncation error coefficients which
could allow the secondary waves to dominate the
solution as Ap + 0. These waves will grow
unboundedly and cause the scheme to "blow-up" if

Ao <0or xp=0and 3q > 0.

5.5 GRID SIZE REQUIREMENTS

Following the conventions of Vreugdenhil (1982), we
compare the approximate solution to Equation 5,
namely:

w=Wp" exp (ijk Ax) (13)

with the exact solution given by Equation 8 using
the following two quantities:

damping factor per wave period, d = |pl2w/c£ (14)
relative propagation ve]ogity,
c. = -(&)™" arg(p) (15)

in which k is the wave number and £ = k Ax. The
number of grid points per wave length is ny = 27/&.
If we define some error e, then we can compute the
required n, to achieve |1-d| < € and ]l—er| < e,

The complex propagation factor p (actually the
eigenvalues of the amplification matrix, see Abbott,
1979) can be conveniently expressed in terms of the
truncation error coefficients. The procedure is
described in Croad (1986) giving general estimates
for n, to achieve an amplitude error e as:

028 = (o)™ 2 (18 (@0 2y, (16)

in which 2q is the address of the lowest non-zero
even-order truncation error. Similarly, for phase
errors:

2r

12" = (ee)™ t2r) 13t (D) (20)2"

i (17)

A2r+1
in which 2r+1 is the address of the lowest non-zero
odd-order truncation error. It is assumed that

A7 = 0 for consistency, otherwise the error cannot
bé controlled by adjusting the grid size.

Only positive values of e are allowed in Equation 16

otherwise an instability in the finite-difference
scheme is implied. The sign for e in Equation 17

(a) amplitude (b) phase

P

1 iy 0
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01 05 1 100-‘1 05 1 2
—_—

Godunoy ——— HEC-6 —e— =15
Fromm = -=-==-=a-n FLUVIAL-11 ————
KUWASER =mmereemmemes 6-point —-——-—B8=055

Fig. 3 Grid Size Requirements to Achieve an
Accuracy of 1 Percent in (a) Amplitude and
(b) Phase Errors

must be chosen to give a positive value for n from
which it can be determined if the phase error is
leading or lagging.

Figure 3 gives the number of grid points per wave
lengths n for |e| = 0.01 in d and ¢ as a function
of the Courant number for the schemes summarised in
Table 1. It can be concluded that:

(a) Generally the amplitude errors of the first
order schemes are quite high relative to the
second order Fromm scheme. The FLUVIAL-11
amplitude errors are generally the Targest of
those schemes studies which are stable.

(b) Similarly, the second order Fromm scheme
generally has the smallest phase errors of the
schemes studied.

(c) The implicit schemes give large amplitude
errors for o > 1. Consequently, the often
quoted benefit of an implicit scheme, of being
stable with large time steps, is not apparent
in the context of the river morphology problem
due to the associated large truncation errors.
The errors will be most severe in shock
regions due to the presence of high o values.

6. NUMERICAL EXPERIMENTS

In order to test the numerical schemes under
non-linear conditions, numerical experiments were
carried out on a test problem.

A1l computations started with the same initial
conditions, namely i = 1 x 10-4, h_= 3.0 m,

u, = 1.0m/s, and s = 2.2 x 10‘3 m¢/s. Equation 10
was assumed for the sediment transport function with
m=2.2x 10-3 s4m3 and n = 5. The Chezy
roughness coefficient was C = 57.7 m /s. The

flow conditions were uniform.

A step increase in the sediment transport rate As
was introduced at the upstream boundary such that
as/sy = 0.1. A relatively accurate analytical
hyperbolic model solution for the above problem,
which includes a correction for the step change in
sediment transport rate, is given by Ribberink and
van der Sande (1985). The following grid parameters
were adopted: Ax = 50.0 m, and At = 0.01, 0.1 days
corresponding to initial Courant numbers oy = 0.066,
0.657 respectively. For the 6-point scheme, 8 =
0.55 was adopted.

The results of the numerical experiments are shown
in Figure 4 giving "snapshot" views at t = 8 days
(the results for the HEC-6 scheme are given at t = 6
days due to the "blow-up" of the scheme). The
analytical solution from Ribberink and van der Sande
(1985) is also plotted (broken 1ine). The following
general observations are drawn from the results:

(a) The Fromm scheme gives the most accurate
results.

(b)  The smearing effects due to the relatively
high truncation errors in the first order
schemes can be seen, The relative amounts of
smearing are consistent with that indicated
from the linear analysis (see Fig. 3).

(c) The presence of secondary waves can be seen
for the Fromm, KUWASER, and 6-point schemes.
The secondary waves for the 6-point scheme are
rather severe but could be reduced by
increasing @ although the amount of smearing
would also be increased.

(e)  The HEC-6 scheme was unstablle for all cases
consistent with the results of the linear
stability analyis. Also convection rates for
the sediment transport process are over
predicted by a factor of two for this scheme
due to the zeroeth order truncation errors.



CROAD

Fig. 4: Results of Numerical Experiments
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Morphological models of the type described by
Equations 1 to 4 require calibration in order to be
applied to problems in nature. Particularly for
solutions represented by large wave numbers, it is
important that the amplitude and phase errors of the
numerical scheme are minimal in order than an
adequate calibration can be carried out. The first
order schemes are less satisfactory from this point
of view.

7.  SUMMARY AND CONCLUSIONS

A number of currently used finite-difference
schemes, used to solve the sediment continuity
equation for river morphology problems, have been
presented. An analysis of their linear properties,
considering truncation errors, amplitude and phase
shift properties and stability, has been given based
on the modified equations which represent the
finite-difference schemes.

From numerical experiments on a test problem
involving strong non-Tinearity and shock
propagation, it has been shown that the conclusions
to be drawn from the Tinear analysis are consistent
with the findings in the non-linear experiments.

For problems involving large wave numbers, it is
shown that the amplitude and phase errors of the
first order schemes give rise to significant
smearing and secondary wave development in the
solution. This could cause difficulties with
calibrating such models when applied to problems in
nature.

Somewhat severe stability limits for the HEC-6 and
KUWASER schemes, predicted from the linear analysis,
are confirmed in the numerical experiments. For
most practical problems, the HEC-6 will always
exhibit instabilities and the results, therefore,
will be unreliable.
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