CHONGG & PRRRV

9th AUSTRALASIAN
FLUID MECHANICS CONFERENCE,
AUCKLAND, 8-12 DECEMBER 1986

Synthesis of Two- and Three-Dimensional Separation Bubbles

M. 8. CHONG and A. E. PERRY

Mechanical Engineering Department, University of Melbourne, Australia

SUMMARY

An algorithm has been developed which enables local
Taylor series expansion solutions of the
Navier-Stokes and continuity equations to be
generated to arbitrary order. The algorithm can he
used to synthesize nonlinear viscous flow patterns
with certain required properties and can be applied
to the construction of two- and three-dimensional
flow separation patterns. These patterns are
asymptotically exact solutions of the equations of
motion close to the origin of the expansion.

1 INTRODUCTION

A critical point in a flow field is a point where the
streamline slope is indeterminate, i.e. (ui/uj) = 0/0
where i # j and uj is the velocity. By Taylor series
expanding the velocity field u; about the critical
point in terms of the space coordinate x.: and
substituting the expansion into the Navier-Stokes and
continuity equations, certain relationships between
the coefficients of the expansion can be found. All
possible patterns close to a critical point can be
derived and classified. Secticnal streamline patterns
form saddles, nodes or foci. Oswatitsch (1957) was
the first to carry out a systematic analysis of
critical points located at a no-slip boundary and
derived the various three-dimensional separation and
reattaching flows close to such points. Lighthill
(1963) discussed further the solutions of Oswatitsch
and Perry & Fairlie (1974} applied phase-plane
techniques to the description of critical points.
Critical points which occur away from no-slip
boundaries (the so-called free-slip critical points)
require different formulations and have been studied
by Perry & Fairlie (1974) and recently, in greater
detail, by Perry (1984a).

Critical points are the salient features of a
flow pattern. If their position and type is known,
the rest of the pattern is known qualitatively since
there are a limited number of ways the streamlines
can be joined between the points. The basic topology
and qualitative transport properties of the pattern
can be understood by using the critical point
concept.

A series expansion up to second order about a
critical point (e.g. the Oswatitsch solution) is
limited to describing the flow in the immediate
vicinity of the critical point. Dallmann (1983) has
recently shown that if the series expansion can be
extended to higher orders, a flow field consisting of
a cluster of critical points can be described in one
formulation. Perry & Chong (1986a) has developed an
algorithm which enables local solutions of the
Navier-Stokes and continuity eguations to be
generated to arbitrary order. The algorithm is such
that the necessary algebraic manipulations required
to generate the relevant equations can be carried out
on a computer. The algorithm has been applied to the
study of three-dimensional separation patterns of the
type recently observed and classified by Bippes &
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Turk (1983), Hornung & Perry (1984) and discussed by
Dallmann (1983).

A brief summary of the theory is given below.
Further details can be obtained from Perry & Chong
(1986b) and full technical details can be obtained
from Perry (1984b) and Perry & Chong (1986a).

2 THEORY

The Navier-Stokes equations for incompressible,
constant density flow can be expressed as a single
tensor equation thus:
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where P=p/p is the kinematic pressure, p is the
pressure, p is the fluid density, v is the kinematic
viscosity, u; is the velocity tensor and Xx; 1is the
space coordinate tensor (Cartesian coordinates). The
continuity equation is

(2)

A Taylor series expansion of the velocity can be
expressed as
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Equation (3) can be written as
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where a+btc = n in every possible combination and
permutation. a, b and ¢ are positive whole numbers or
2ero. R = number of possible permutations of the
indices in (111...,222...,333...) where 1 is repeated
'a' times, 2 is repeated 'b' times and 3 is repeated

‘e' times.

v

By substituting the series expansion (3) into
the Navier-Stokes and continuity equafions
relationships between the various unknowns
coefficients can be generated (see Perry 1984b and
Perry & Chong 1986a,1986b). A corresponding set of
equations for two-dimensional flow can also be
derived.

In the generation of the Navier-Stokes
relationship we are effectively constructing
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vorticity transport equations to various orders
(since pressure has been eliminated). These turn out
to be first order ordinary differential equations for
the series.expansion coefficients. With the aid of
the algorithm developed, it is possible to generate
all the Navier-Stokes and continuity relationships
between the cocefficients to any order. The authors
have developed a computer program which generates the
equations because of the enormous amount of algebra
required.

The number of unknowns always exceed the number
number of equations generated using the algorithm.
Hence, in order to cbtain a solution, additional
equations must be supplied from boundary conditions.
In steady flow the problem is to solve a set of
simultaneous algebraic equations. The continuity
relationships are simple linear algebraic equations
and the Navier-Stokes relationships consists of
linear (viscous) terms and quadratic (convective)
terms.

It has been found that in steady flow patterns,
the specifications of boundary conditions on
boundaries which passes through the origin of the
expansion (canonical boundary conditions) lead to a
very simple solution procedure. Because of the
sequence in which certain coefficients are
determined, the procedure leads to sets of
Navier-Stokes relationships which are linear in the
remaining unknown coefficients (all quadratic terms
contain at least one known coefficient). All
equations are then effectively linear in terms of the
coefficients and can be solved by substitution. In
other types of boundary condition specifications, the
Navier-Stokes generated relationships remain
nonlinear with terms involving products of unknown
coefficients.

The specification of boundary conditions as a
series introduces problems of redundancy. Certain
coefficients determined from boundary conditions must
also satisfy the equations of motions otherwise a
contradiction occurs. In all computations carried
out, coefficients determined from the equations of
motion take priority if the same coefficients can
also be determined from boundary conditions. These
redundant boundary condition equations are ignored.

The above algorithm has been tested by Perry
(1984b) using a number of simple three-dimensional
test cases which have known solutions, e.g. the
solutions given by Perry (1984a) and Hornung (1983).
A further test of the algorithm using a simple
potential flow problem is given in Perry, Chong &
Hornung (1985) and in Perry and Chong (1986). Several
methods were also developed for determining the
region of accuracy which is defined as the region
where the full Navier-Stokes and continuity equations
agree with the generated truncated set of equations.
This region will be a finite zone surrounding the
origin of the expansion. The authors have found that
the most convient way of determining the region of
accuracy is to compare the truncated value of
|grad P|, i.e. [VP1T with |grad P| obtained by
substituting the truncated solution of the velocity
field into the full Navier-Stckes equation, i.e.
|9P|p. A suitable criterion for the region of
accuracy can be formulated as follows

{|velg - IVB|p}/[VP|p < 10 % -

3 SYNTHESIS OF SEPARATED FLOW PATTERNS

.
Istead of specifying boundary conditions to generate
separated flow patterns, a general procedure has been
developed for the synthesis of two- and
three-dimensional flow separation. The surface
vorticity must first be specified such that various
critical points on the surface are defined. Points of
separation and reattachment are critical points. By
shifting the origin of the series expansion to
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various critical points located on the surface and by
specifying the properties of these critical points,
sufficient equations relating the various
coefficients can be generated which allow the surface
flow patterns to be synthesized. The flow pattern
above the surface which would generate a particular
type of surface flow pattern is not unique and a
variety of separation flow patterns could be
generated. Further conditions need to be specified.
These conditions are usually the angles of separation
and reattachment and various locations and properties
of critical points above the surface. In general, the
higher the order of the series expansion, the more
conditions need to be specified for closure.

Figure 1 shows a typical example of a fifth
order two-dimensional separation bubble which can be
synthesized. A suitable region of accuracy is also
shown in the figure. As an additional check on the
algorithm, these solutions were used to generate
boundary conditions for u; and u; along the xy and x
axes. These were then used with the algorithm and the
resulting solution agreed with the synthesized
solution to great accuracy over the entire flow
field.
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Figure 1. Fifth order two-dimensional separation
bubble. The region of accuracy is the
shaded zone about 0.

An example of a three-dimensional separation
bubble is shown in figure 2. The surface flow
patterns (limiting streamlines in the X1X, plane)
has been classified as owl-face of the second kind by
Hornung & Perry (1984) and Perry & Hornung (1984)
from surface dye trace observations of flow behind
missile-shaped bodies at various angles of attack
(see Fairlie 1980 and Bippes & Turk 1983). The
Reynolds numgers of the observed patterns are high
(of order 107) but the flow patterns_synthesized are
at low Reynolds numbers (of order 10° or less. The
Reynolds number here is based on the vorticity at the
origin divided by viscosity. Nevertheless,
in this preliminary investigation we
have managed to synthesize patterns which are
topologically similar to those observed (at least at
the surface).

Unsymmetrical solutions can be obtained by
generating the canonical boundary conditions from the
synthesized symmetrical solutions and perturbing the
resulting boundary conditions on the x X3 plane so
that the symmetry condition is violated. We then use
the algorithm in combination with the new
unsymmetrical canonical boundary conditions to solve
for the three-dimensional flow pattern. This solution
includes the limiting streamlines. This has been
applied to the owl-face pattern of the first kind
(see Hornung & Perry 1984 and Perry & Hornung 1984).
The resulting pattern is shown in figure 3. Note in
figure 3(a) how fluid shown shaded on one side of the
centre plane finds its way to the focus on the other
side of the centre plane. This pattern has undergone
a major change in topology since the original
symmetrical pattern was structurally unstable, i.e.
it possessed a saddle-to-saddle connection by a
separatrix streamline (see Tobak & Peake 1982 and
Perry & Hornung 1984 regarding structural stability).



Figure 2. Fourth order owl-face of the second
kind. (a) Surface flow pattern, i.e.
limiting streamlines on the x;x,

plane. (b) Oblique view with some out-
of plane trajectories added (shown
heavy) .

A preliminary attempt at solving a
time-dependent two-dimensional separation bubble has

also been carried out. If the flow is unsteady, these

boundary conditions must be known functions of time
which become forcing functions for the ordinary
differential equations. Also, all coefficients must
be known at some initial time. Solving the problem as
a time-dependent one also overcomes the difficulty of
nonlinearity which arises from a specification of
noncanonical boundary conditions. Here we march in
time and the various coefficients are updated by
simple substitution without any iterative procedure
at the end of each time step. An example of a flow
pattern obtained is shown in figure 4(a). In this
preliminary attempt the separation bubble is of a
non-standard type as sketched in figure 4(b). The
flow pattern is topologically correct. Work is still
being carried out to produce a standard unsteady
separation bubble of the type shown in figure 1.

Another aspect of this work which is still
undergoing development is the generation of the
vorticity field from the series expansion of the
velocity field. Integrating the vorticity field
produces critical points of vorticity and the
topological features of the vorticity field can be
explored. Unlike the velocity field, the vorticity
field are often complex and there is no systematic
method of mapping out the vorticity field except for
low order of series expansions. For example, the
vorticity field which corresponds to the owl-face of
the first kind (as classified by Perry & Hornung
1984) and shown in figure 5(a) is given in figure
5(b). This is for a 3rd order expansion of the
velocity field. At this low order of series expansion
a line of zero vorticity forms the "backbone" on the
X1X3 plane. Trajectories originating from points
which lie on a horizontal line passing through the
backbone and normal to the x;x; plane form
cylindrical sheets as shown in figure 5(b). This is
more obvious in the plan view and side view shown in
figure 5(c) and (d) respectively. It should also be
noted that the vorticity vectors on the surface are
orthogonal to the limiting streamlines as pointed out
by Lighthill (1963). At higher orders of series
expansions, the vortex lines no longer lie in well
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Figure 3. Fifth order unsymmetrical owl-face

of the first kind. (a) Surface flow
pattern, i.e. limiting streamlines on
the x3x3 plane. (b) Oblique wview with
some out-of-plane trajectores added
(shown heavy) .
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Figure 4. Ninth order two-dimensional
separation bubble solved as a time
dependent problem. (a) Computed
vector field. (b) Conjectured flow
pattern of (a).

defined sheets. The structure of the vorticity field
is unlike the conjectured model of the vortex
skeleton suggested by Perry & Hornung (see figure
5(e)). Perhaps at the low order of series expansions
(which suggests low Reynolds numbers), the vorticity
is diffused and it is only at much higher Reynolds
numbers that the vorticity concentrates into vortex
rods which forms the vortex skeleton model. This
aspect of the work is still being developed.
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FIGURE 5. Third order owl face of the first
kind.

(a) Oblique view of instantaneous
streamlines with some out-of-plane
trajectories.

(b) Oblique view of vorticity lines.

(c) & (d) Plan and side view of (b).

(e) Conjectured vortex skeleton model
Perry & Hornung (1984b) .

4 CONCLUSIONS AND DISCUSSIONS
An algorithm has been developed which enables the

local Taylor series expansion solutions of the
Navier-Stokes and continuity equations to be
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generated to arbitrary order. The algorithm enables
flow patterns to be synthesized. These synthesized
patterns are known to be asymptotically exact
solutions to the eqguations of motions close to the
origin of the expansion and are valid in a finite
zone with a certain accuracy. This synthesis is
analogous to that carried out in classical
hydrodynamics where a pattern with various required
properties is constructed by an appropriate
distribution of sources, sinks or point vortices.
Here we are carrying out the construction of
nonlinear viscous flow patterns by the choice of an
appropriate arrangement of critical points and the
solution strategy is such that we are solving
analytically a set of linear equations by successive
substitution. With these analytical solutions, the
vorticity fields can be obtained and the topclogical
properties of such fields can be explored.
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