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ABSTRACT

Finite difference solutions have been obtained by the
perturbation method to investigate the-influence of shear
thinning and elasticity on the flow around an inclined
circular cylinder of finite length. and the hydrodynamic
force. The upper-convected Maxwell model, in which the
viscosity changes acccrding to Cross model, has been
used. Viscoelastic fluids are prone to flow axially in
the vicinity of a cylinder. The numerical predictions
generally agree with the flow visualization results. The
numerical solutions also show that elasticity has a stro-
ng effect on the flow profile especially around both ends
of the cylinder. When only shear thinning is taken into
account, the moment acts on the ecylinder in the way so

as to rotate it into a perpendicular orientation to the
incoming flow, whereas the moment to rotate the cylinder
into a parallel orientation to the flow can be cbtained
when both shear thinning and elasticity are taken into
account.

1 INTRODUCTION

A slender body, namely a straight circular cylinder with
a large length to diameter ratio, falling in guiescent
Newtonian liquids rotates to adopt a horizontal orienta-
tion, whereas it rotates towards a vertical orientation
when falling through quiescent polymer solutions (Chiba
et al., 1986). This phenomenon depends strongly on shear
thinning and elasticity, however, it is still not clear
how the viscoelasticity contributes to the attitude vatri-
ation of the body. It is necessary to study and discuss
closely the velocity and stress fields of viscoelastic
fluids around a circular cylinder inclined to the flow.

A few papers have been published on the three-dimensiocnal
flow of Newtonian fluids around an inclined circular cy-
linder of finite length in a uniform flow. Slauti &
Gerrard(1981) and Ramberg(1983) dealt with the dependence
of the configuration of the vortices on various end con-
structions but they did not study quantitatively the
three-dimensional flow. To our knowledge, there are no
existing data, either theoretical or experimental, on
viscoelastic flow around a finite cylinder.

In this paper, numerical solutions are presented for the
flow around an inclined circular cylinder of finite leng-
th and the hydrodynamic force in a uniform flow of Newto-
nian, non-Newtonian inelastic and viscoelastic fluids,
and the influence of shear thinning and elasticity is
discussed. The particle path predictions around the cy-
linder are also compared with the flow visualization re-
sults obtained using dye injection method.

2 BASIC THEORY

Motion of incompressible continua obey the following
equations:

Equation of continuity; vt ) (1)
Cauchy's equation of motion;
pDv‘/D¢=—P.jer"+T‘f.j (2)

where vl;velocity vector, P;ligquid density, p;isotropic
pressure, T'/;extra stress tensor, giJ;metric tensor,
and D/Dt;material derivative.

The upper-convected Maxwell model in which the viscosity
changes according to Cross model(1965) is used. The
constitutive equations are given by

Figure 1 The coordinate system.

(144D /Dt )T =3 §et) (3)
and viscosity 0 is
0=t + (g =10/ [ 1+x (4|1, |)V/3) (4)

where Tg;zero-shear viscosity, Ne;infinite-shear visco-
sity, K;material prameter, elJ;deformation rate tensor
of Euler, IIe;second invariant of eild, A;relaxation time
,and Do/Dt;convected derivative.

We consider the steady flow past a circular cylinder of
radius,a, and of length,l, as shown in Figure 1. At in-
finity the fluid is assumed to flow in the yz direction
with a constant velocity U,- We refer all motion to a
set of cylindrical polar coordinates(r,8,z), where the

z axis is inclined to the y° axis at an angle of o in

the y’y® plane. We introduce a vector potential ¢ defi-
ned by v=curly. The equation of continuity is satisfied
identically. We make a transformation into non-dimensio-
nal variables as follows:

=/, Sanfe, v s fU, v sy U, v e U, L =/ U2/ 2),

T, =T, frglee/ @ ), Ty =Tgal Cngllat @, T, =T, /Cng U/ ),

Ty =T,/ Cno U8 ), T, =Tg M 0g Upo/ 83, T, =T, Mt/ 0. =4/ Uy, (5)
4y =00/ 0 Un, 8, =S80, 0, =0 f(Up/ o), wy "=y /(U fa) 6, =0 /(U a),
r=1/(a/U,), Re=2apU, /1y , We=AU_/ 20, I'=1/a

where Re;Reynolds number, We;Weissenberg number.

We eliminate the isotropic pressure from the three equa-
tions of motion to get the vorticity transport equations
. The vorticity vector w¥ is also related to the vector
potential ¢*- For brevity, thses equations are not wri-
tten here. The boundary conditions on velocity compone-
nts are at infinity;

v =—sina cos Ty , v,':sinarsin Ty u:=cosa (6)

r

on the cylinder; vo=v, =vo =0 (7)
and in the symmetric plane; 9« /8y =0v/ay=v,"=0 (8)

Our purpose is to analyze the flow when the elastic eff-
ect begins to appear. So, such a assumption can be int-
roduced as We<l. Then, the numerical analysis is carried
out as a perturbation expansion in the small Weissenberg
number. For the two-dimensional viscoelastic flow past
a circular cylinder, the contribution of the second order
stress of the Weissenberg number to the total drag force
is at most 2 or 3%. So, we take into account only the
zero and first order terms in the present computations.
The zero order term show a non-Newtonian inelastic flow.

The ADI method is used to calculate the values of the
vorticity at the new time step and the solutions of the
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Table 1 Calculation conditions for Newtonian and
non-Newtonian inelastic fluids.

fluid Re a(®) | d(mm) L dr
0.1 0.5 %107
1 45 05 %1072
Newtonian fluid | 10 5 40 0.5% 1072
10 15 -2
0.5X10
10 75
1 e 5 0.5%1073
10 0.5% 1072
non-Newtonian 1 0.5%107%
Fluid 1 10 s z b 0.5% 1072
15 -3
0.5X 10
1 = 2
non-Newtonian =3
.5 %
Fluid 2 1 75 2 40 0.5X 10
Fluid 1 : 7=003527 (Pa-s), 7,=0.00256 (Pa-s), £=0.1871
Fluid 2 : 3,=0.1005 (Pa-s), 7,=0.00240 (Pa-s), r=0.4914

Table 2 calculation conditions for viscoelastic fluids.

shear thinning Re a(®) | d{mm) i v
15

Fluid 1 1 2 40 D4x 1073
75

Fluid 2 1 75 2 40 0.4 x 107

Vector potential equations are obtained by the SOR method
. The ADI method divides the time step AT into three
one third steps,At/3. The computational conditions are
listed in Tables 1 and 2. We use two kinds of shear th-
inning behaviors termed non-Newtonian Fluid 1 and 2 in
Figure 2. Each behavior corresponds to that of 0.05wt%
and 0.1wt% Separan AP-30 solutions, respectively. The
computational domain and grid size are as follows:
0£n<1, An=1/12; £<1.2, giving an outer non-dimensional
radius rs of 43.4, AE=0.1; -20£[£60, AC=2.5. Where the
following transformation of the independent variables

is made

.
£ =a"‘=

= 7=0/n ; C=" (9)

3 PARTICLE PATH AND VELOCITY FIELD AROUND THE CYLINDER

Particle path can be obtained by moving a particle at the
same velocity as fluid velocity from twenty three initi-
al positions {r%,ﬁp,zf). It is three-dimensional curve,
s0 we mainly draw its projection onto the symmetric plane
+0=0,T, to compare it with the streak lines obtained by
the flow visualization experiments which are conducted
by injecting methylene blue dye solution slowly through
the small holes provided on the cylindrical surface and
end face. A circular cylinder of 5 mm in diameter and
200 mm in length is used and the dye streak lines are
photographed.

From dye streak lines in Figures 3(b) and 3(c), the local
flow over the cylinder is only slightly deflected. How-
ever in the wake flow the streak lines are remarkably ~
influenced by the axial flow and rapidly flow up parallel
to the axis. Then they gradually rejoin direction of

the incoming flow. 1In figure 3(a), it can be seen that
the particle paths become closer to the incoming flow
direction for the non-Newtonian inelastic fluid than for
the Newtonian fluid as the cylinder is approached; £luids
with the shear thinning viscosity are prone to flow axi-
ally in the vicinity of the cylinder. This is because
the shear thinning behavior greatly reduces the fluid
viscosity adjacent to the cylinder. This tendency is
verified by measuring the angles of the streak lines
against the cylinder's axis at 8=90° on the streak line
photegraphs.

Figure 3 shows that the dye flows up parallel to the ax—
is behind the cylinder because it enters the wake region
, whereas this phenomenon can not be predicted because
the particle moves over this region. The particle paths
in the wake flow are shown in Figure 4 for the non-New-
tonian Fluid 1. The particles flow towards the leeward
end accompanied by spiralling and the rapid flow-up phe-
nomenon similar to that of the observed streak lines
when moving away from the cylinder can be seen.
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Figure 2 Shear thinning viscosity used in calculations.
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Figure 3 Particle path around a cylinder, (a)particle
path for Newtoniafn fluid and non-Newtonian inelastic
fluid, ri=2, B=5°, (b)dye streak lines in water, Re=9.7
, (c)dye streak lines in a 0.05wt% Separan AP-30 solution
. Re=10.

Let us now consider the influence of elasticity on the
velocity field. We plot velocity profiles on the cylin-
drical surface of £=0.1 in Figure 5. If one introduce
elasticity into the fluid, then both v: and vi of the
non-Newtonian inelastic fluid increase in the front zone
and, in reverse, decrease in the rear zone. The profiles
of the first order velocities of the Weissenberg number,
v and v, show that the differences in v and v¥ petwe-
en at the symmetric positions about the cylinder's center
of mass are small in a mid region of the cylinder, howe-
ver, they become considerably large as both ends are ap-
proached. This indicates that the elastic effect manif-
ests itself remarkably in the region where the velocity
field changes drastically. Figure 5(a) shows that elas-
ticity decreases the difference in vX between at the wi-
ndward end and at the léeward end. ?n addition, for the
non-Newtonian inelastic fluid the axial velocity v% gra-
dually forms a symmetric profile with respect to n=0.5
towards the leeward end in Figure 5(b). However, such a
symmetric profile of vg can not be seen for the viscoela-
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Figure 4 Particle path in a wake flow, ri=1.1, B,=135°.
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Figure 6 Stress distribution for Newtonian fluid,
(a)normal stress, (b)shear stress.

stic fluid. It also seems clear that elasticity increa-
ses the asymmetry of vE

4 STRESS DISTRIBUTION AND HYDRODYNAMIC FORCE ON THE
CYLINDER

The cylinder is subject to a drag force in each of the
perpendicular and axial directions, Dp and Da, and a
moment, N. To compute these, we must calculate the dis-
tributions of normal stress and shear stress around the
surface of the cylinder. The extra stress components
are obtained from the constitutive equations and the iso
tropic pressure distribution arocund the cylindrical sur-
face is found by integrating the © momentum equation.
The stresses for viscoelastic fluids are given by, e.q.

(10)

normal stress,c%r, and
at three different posi-
For both Newtonian and

o
By Ve = [ 2,59 $u Mwa )

In Figures 6 and 7, we plot the
shear stress,T%a, distributions
tions, i.e. at §=5, 20 and 35.
non-Newtonian inelastic fluids, U%r and T%a are minimum
at £=20 and maximum at {=5. The shear thinning behavior
greatly reduces the fluid viscosity adjacent to the cyl-
nder, in turn reduces Gfr and T§e of the Newtonian fluid
- When a fluid flows arcund an inclined cylinder, the
axial flow varies the shear rate on the cylinder surface
along the axis and the shear rate near the leeward end
becomes smaller than that near the windward end. For
non-Newtonian inelastic fluids, an increase in viscésity
compensates to some extent for a decrease in the. veloci-
ty gradient, so the differences in U%r and T§e between
at £=5 and =35 become smaller compared with for Newton-
ian fluids.

Both the first order normal stress and shear stress of
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Figure 5 Velocity profile for non-Newtonian inelastic
fluid and viscoelastic f£luid, (a)circumferential
velocity, (b)axial velocity.
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Figure 7 Stress distribution for non-Newtonian inelastic
fluid, (a)normal stress, (b)shear stress.

the Weissenberg number, O?r and I%b, show a similar tend-
ency to that of the first order velocity; the differences
in G%} and Trp between at the symmetric positions about
the cylinder's center of mass are small in a mid region
of the cylinder, however, they become considerably large
as both ends are approached. As might be expected, the
elastic effect on the stress distributions appear marked-
ly in the region where elasticity has a strong effect on
the velocity field. The fact that G%} is about a hundred
times larger than }3 leads to the conclusion that elas-
ticity has little effect on the shear stress, whereas it
strongly affects the normal stress. In Figure B(a), for
the non-Newtonian inelastic fluid the normal stress is
positive around the cylindrical surface, whereas it beco-
mes negative in the front zone of the cylinder as the
elasticity increases. The reason for this is that stream
near the cylinder is deflectrd around the surface and, as
a result, a compressive forc. due to the elastic force
acts in the front zone for viscoelastic fluids.

We now di:cuss the hydrodynamic force. The drag forces
vary along the cylinder's axis. Let AD%I,AD§5 denote the
perpendicular drag forces per unit length due to Opy and
Trg, respectively, and ﬂD%r the axial drag force due to
Tzr. They are normalized with respect to TapUx/2. ADgr
,Anﬁs and ADEr rise to a peak near both ends of the cyl-
inder, but then fall rapidly as a mid region is approa-
ched. Especially ADEy and AD%@ keep almost constant alo-
ng the cylinder's axis in the mid region, 10<Z<30.

The effect of shear thinning and elasticity on the drag
force as follows: the shear thinning behavior decreases
both perpendicular and axial drag forces, and also decr-
eases the difference between the perpendicular drag force
near the windward end and that near the leeward end.
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Figure 8 Stress distribution for non-Newtonian inelastic
fluid and viscoelastic fluid, (a)normal stress,
(b) shear stress.

Elasticity increases AD;r- Because an increment in AD§r
near the leeward end is larger than that near the wind-
ward end, the former drag force exceeds the latter one
as the Weissenberg number increases. ADée and ADEr,how—
ever, are little influenced by elasticity.

The moment, N, round the cylinder's center of mass is due
to AD§,,AD§5 and the frictional drag forces on the end
faces. Its sign is defined to be positive when the mo-
ment acts in such a way as to rotate the cylinder into a
perpendicular orientation to the incoming flow. Let N
denote the moment normalized with respect to ﬂaaonZo/Z.

To investigate the contribution of the distributions of
AD%r and AD%Q to a moment,Nz, we plot AN¥ distribution

in Figure 9, which is given in the following form.

AN =(0aD," + 4D )b, + 4Dy ) b VT /2-0) (1)

For the non-Newtonian inelastic fluid ANT is positive
over a range of [, but AN% at C=0 falls to a negative
value with an increase in elasticity. Aand An¥ becomes
negative even at {=2.5 for We=0.3. Figure 9, thus, shows
that the moment is due to the difference in perpendicular
drag force between 0<{<10 and 30<z<40.

Dﬁ,Dg, the total perpendicular and axial drag forces nor-
malized with respect to Ta pui/2, and N* are listed in
Table 3. Tables 3(a) and 3(b) show that the moment,N,
increases with the incoming flow velocity for both Newt-
onian and non-Newtonian inelastic fluids. From Table 3
(b) , when only shear thinning is taken into account, the
moment acts in the way so as to rotate the cylinder into
a perpendicular orientation to the flow. However, the
shear thinning behavior decreases the Newtonian moment
and the moment also decreases with increasing shear
thinning. On the other hand, Table 3(c) shows that n¥
decreases as the Weissenberg number increases, and it
becomes negative at the Weissenberg number equal to about
0.2 for the non-Newtonian Fluid 2 and «=75°. From above
discussion, we can obtain an important conclusion that
the moment acts to rotate the cylinder into a parallel
orientation to the flow when both shear thinning and ela-
sticity are taken into account.

5 CONCLUSIONS

1. The local flow over the cylinder is only slightly
deflected. However, the particle path rapidly flows up
parallel to the cylinder's axis in the wake flow. Then
it gradually rejoins direction of the incoming flow.

The numerical predictions generally agree with the flow
visualization results.

2. Elasticity has a particularly strong effect on the
velocity field in the region where the velocity changes
drastically, i.e. regien near both ends of the cylinder.
3. For Newtonian and non-Newtonian inelastic fluids, the
moment, which acts in the way so as to rotate the cylin-
der into a perpendicular orientation to the flow, incre-
ases with an increase in the Reynolds number.

Table 3 Calculated drag forces and moment.
(a) for Newtonian fluid

o) Re | 1° pp' D, | &
0.1 3157 1850 296.6
45 |1 320.6 |187.0 |103.5
10 | 40 50.43 27.08 64.32
15 | 10 12.09 28.56 41.75
75 | 10 86.38 | 11.85 | 28.69

(b) for non-Newtonian inelastic fluid

& 4 . . . -
shear thinning a(”) Re Gnm) 1 D’ D, N

1] s 238.6 140.9 79.19

10| s 20.45 16.13 | 30.48

= v |z | | ader 95.44 | 54.38

Fluid 1 10| 2 17.21 12.47 | 47.91

15 1| 2| 40 58.09 | 1413 89.43

75 1 2 40 217.1 42.50 40.31

Fluid 2 75 1] 2| 40 63.59 13.20 | 1131

(c) for viscoelastic fluid

shear thinning |a(®) R¢(;m 1t we D,- n,* N
0.1 57.91 1412 75.03
15 1 2 40 0.2 57.73 141.0 60.62
0.3 57.55 140.9 46.21
Fluid 1
0.1 225.4 42,32 | 28.39
75 1 2 | 40 |02 2336 42.14 16.47
0.3 241.9 41.96 4.544
0.1 66.34 13.14 5.868
Fulid 2 75| 1|2 |40 |02 69.08 13.08 0.4256
0.3 71.82 13.01 | -5.017

4. The shear thinning behavior greatly reduces the fluid
viscosity adjacent to the cylinder, in turn reduces drag
force. 1In addition, an increase in viscosity compensates
to some extent for a decrease in the velocity gradient on
the cylinder surface. Therefore, the moment to rotate
the cylinder into a perpendicular orientation to the flow
decreases with an increase in shear thinning.

5. Elasticity has little effect on shear stress, whereas
it strongly affects normal stress and the drag force due
to the normal stress becomes larger as elasticity increa-
ses. This elastic effect is especially remarkable near
both ends of the cylinder.

6. When only shear thinning is taken into account, the
moment acts in the way so as to rotate the cylinder into
a perpendicular orientation tc the flow. In ceontrast,
the moment to rotate the cylinder into a parallel orien-
tation to the flow can be predicted when both shear thi-
nning and elasticity are taken into account.
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