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ABSTRACT

The rotating sliced cylinder is considered as a simple
model of the wind-driven ocean circulation. The model
consists of a rotating right-cylinder with the base
inclined at a small angle, containina a homogeneous
fluid. The interior flow is driven by the cylinder

1id which rotates steadily at a slightly different

rate to the rest of the contajner. For critical values
of the flow parameters AwRo/E? and the bottom slope o,
the flow becomes unstable. By comparing the results

of numerical models for the inviscid and viscous flows
with Taboratory experiments it is shown that a possible
mechanism for this unsteadiness is a free shear layer
instability.

INTRODUCTION

The rotatina sliced cylinder is illustrated in
Fiqure 1. It consists of a cylindrical basin of
radius 7* and averaae depth 4% filled with a
homoaeneous fluid, rotatina at a uniform angular
velocity Q*. The lower surface is formed by a plane
intersecting the cylinder at a small angle B, while
the upper surface is normal to the cylinder axis and
rotates steadily with excess angular velocity eqQ*.

%

Figure I: The rotating sliced cylinder model.

The sTiced cylinder was first studied as a model of
the Targe scale ocean circulation in mid-Tlatitudes.
In this analoay, the cylinder represents the ocean
basin and the rotating 1id simulates the surface wind
stress. The sloping base of the cylinder models the
so-called "p-effect" i.e. the effect of the variation
of the earth's rotation with latitude.

Pedlosky and Greenspan: (1967) introduced the sliced
cylinder model and studied the linearised equations

for the inviscid flow. Beardsley (1969) also studied
the linear equations and carried out some laboratory
experiments noting that the flow became unsteady for
large values of the driving stress. Beardsley (1973)
and Beardsley and Robbins (1975) compared a numerical
model of the viscous flow to the experimental results
and concluded that the observed unsteadiness was due to
a Rossby wave instability.

In this paper, numerical models for the inviscid and
viscous flows are compared to the results of
Taboratory experiments and an attempt is made to
expldin the unsteadiness of the flow in terms of a
shear layer instability.

FORMULATION

The flows considered are those of an incompressible
fluid of constant density and kinematic viscosity
v¥, the Ekman and Rossby numbers are defined in the
usual way:
* *

E=gir K1 and ko= fm=o(h) (1)
where U* is a typical velocity scale U*=el*Q*, The
Navier-Stokes equation in terms of these variables are
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where wu* is the fluid velocity relative to the
rotating frame and P* is the reduced pressure, i.e.
with the centrigugal contribution subtracted.
Equations (2) and (3) are scaled by the length scale
1*, velocity scale v* and time scale (Q*)-! and
expanded in powers of £*. The resulting non-
dimensional equations for the flow to Towest order are
3 MW =1- ¢ - av + 6202 (4)
Vel =g (5)

where w=(wu,v,0), r=k.(V=u), and 6=(dE§/2)%. The
streamflinction ¢ can"be défined in the usual way, since
the flow is geostrophic and hence two-dimensional to
this order.

The two key 0(1) flow parameters are
= R‘old and &

2E* E
where o is the bottom slope scaled by the Ekman layer

thickness and ) is the scaled Rossby number and is
related to the magnitude of the driving stress.

- tang (6)
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INVISCID MODEL

For the inviscid flow in the sljced cylinder, the
governing equations are (4) and (5) omitting the last
term in (4) which is o(E%). These equations were
solved on a uniform polar grid using second order
central differences for the » and 0 derivatives.
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The vorticity equation (4) was solved for ¢ using an
"alternatina directions implicit" method and the
Poisson equation (5) was then solved for the stream-
function ¢ using Fourier transforms. The equations
are thus alternately integrated forward in time to
steady state.
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Figure 2: Streamfunction plots for the inviscid model.

A selection of results from this numerical model are
showr in Ficure 2. With A=0, the plots show the
effect of varyino o (or the bottom slove of the
cylinder) and we see that the flow pattern is
asymmetric, the central vortex having moved to the
"western" side of the cylinder, forming a strono
western boundary current of thickness 1/c. The flow
is still symmetric about the y-axis, however,
increasing A (i.e. increasing the effect of the
drivina stress) causes the main vortex to be displaced
toward the south so that the flow pattern Toses its
symmetry altogether. For larger X, the vortex is
displaced further south until the flow becomes almost
symmetric about the x-axis. There is no evidence of
unsteadiness in these flows.

VISCOUS MODEL

To study the viscous flow, we solve equations (4) and
(5) retaining the side wall friction term which was
omitted from the inviscid model. These equations were
solved numerically on a stretched polar arid using a
similar method to that described in the previous
section. For details of this model see Becker and
Page (1986).

In Fioure 3 flows resultino from this viscous model
are compared to the inviscid flows. Again, there is no
sian of unsteadiness in the inviscid flows. The
viscous flows, while similar in character to the
inviscid flows, show a slower region of flow in the
eastern half of the cylinder. For the higher value of
A, a small sub-vortex has formed in the north. The
corresponding vorticity plots show a region of strong
vorticity in the centre of the cylinder. This
represents the separated sidewall boundary layer which
has moved into the interior flow region causing the
disturbance to the streamlines in the eastern half of
the cylinder.
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Comparison of inviscid and viscous flow
models.

Figure 3:

At the higher value of A, the flow is unstable.
Looking at the streamline plots over time, the sub-
vortex forms in the south-east, moves northward and is
absorbed back into the main flow, to re-form in the
south-east. The vorticity plots for this A value show
a pulse-Tike bulge moving along the region of high
vorticity.

LABORATORY EXPERIMENTS

The experimental apparatus, shown in Figure 4,
consisted of a glass cylinder of inside diameter

150mm (£0.0lmm). The geometry of the sliced cylinder
was inverted so that the sliced "bottom" was formed by
a glass disk fitted to the top of the cylinder at a
fixed angle of B=7.5° to the horizontal. The "1id" of
the cylinder was formed by another precision ground
alass disk inserted so that the mean depth of the
cylinder thus formedwas 175mm. This driving 1id was
rotated by a motor connected to a digital freguency
generator.

The cylinder was mounted on a turntable Im in diameter
which was rotated by a driving motor controlled by a
feedback loop from the table. The turntable could be
rotated at speeds varying from 5-100vrpm.

Flow visualisation was achieved using a suspension of
highly reflective "mearle" flakes (titanium dioxide
coated mica flakes) illuminated from the side. A
camera with remote shutter control was mounted above
the cylinder and a video camera was used to view the
flow while the cylinder was rotating. When the flow
appeared to be steady, a series of photographs was
taken to ensure repeatability of the flow pattern.
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Figure 4: A: 35mm camera; B: slopina "bottom";

C: rotatina olass disk; D: perspex disk;
E: seals; F: bearings; G: driving gear;
driving motor; I: support; J: digital
frequency generator; K: mirrors; L: 1ight
source.
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In Figure 5, steak photographs are shown for o and A
values matching those of Fiaure 3. For the lower value
of A, the main vortex is clearly oresent in the south-
west and the flow is almost staanant elsewhere. With
A=41.37, the main vortex has increased in size and a
sub-vortex appears in the north. In fact, this sub-
vortex is periodically formed in the south-east, and
moves northward, matching very closely, the behaviour
of the numerical model for the viscous flow for the
corresponding parameter values.

Fiqure 5a: Streak photograoh for a=17.34 and A=5.17.
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Figure 5b: Streak photograph for a=17.34 and X=41.37.

CONCLUSION

The inviscid flow is stable over a large range of
values of a and A (which is inconsistent with
Beardsley and Robbins who expected a Rossby wave
instability). For Targe values of the driving stress.
both the numerical model for the viscous flow and the
laboratory flows become unstable. This implies that
the instability is due to viscous effects and since
the flow does separate, the unsteadiness is most
1ikely due to a shear layer instability.
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