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ABSTRACT

Increasing development along coastal regions has
resulted in engineers and water resource managers
having to become conversant with the interaction
between flow, flood or otherwise, in rivers and
the tidal cycle in the ocean. The tidal cycle

and its interaction with river flows is an
example of unsteady flow. Consequently,
determination of the interaction between the tidal
cycle and the river flows requires solution of

the unsteady flow equations,

This paper presents results from a solution of
the non-dimensional unsteady flow equations for
alternative tidal and river conditions. Also
presented is a summary of the algorithm used

for the numerical solution of the non-dimensional
unsteady flow equations.

1s INTRODUCTION

There are two broad classifications into which flow
in open channels can be arbitarily divided. These
two classifications are steady flow and unsteady
flow. Water flow in most natural channels is almost
alvays unsteady. At the mouth of a river, the
unsteadiness in flow can be introduced either by the
action of the tidal cycle or by time variant flow rates
in the channel. To determine the interaction between
the tidal cycle and the flow in a river it is
necessary to solve the dynamic wave equations,
commonly referred to as the Saint Venant equations.
Numerical algorithms for the dynamic wave equations
can be broadly classified as:-

1. characteristic methods using either a fixed
spatial grid or a characteristic grid,

2, explicit methods, and

3. implicit methods.
These solution algerithms can be applied to the dynamic

wave equations in a dimensional or a non-dimensional
form.

The purpose of this paper is to present a summary of
an implicit algorithm used to solve a set of non-
dimensional dynamic wave equations and, hence, to
determine the interaction between the river flow and
the tidal cycle. Also presented are the results of a
sensitivity analysis showing the influence upon the
solution of a number of non-dimensional parameters.

2. UNSTEADY FLOW EQUATIONS

One dimensional unsteady flow can be described by two
non-linear hyperbolic partial differential equations.
Henderson (1966) showed that, for a wide rectangular
river, the dynamic wave equations can be expressed as
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where y is the flow depth, u is the average velocity,

¥ is the longitudinal distance along the river
(positive downstream), t is time, S, is the friction
slope, S 1is the bed slope and g is acceleration due to

gravity. Using the non-dimensional quantities
T = (3)
Yo
U = u (4)
u
o
X = x8§ (5)
Yo
T = tus (6)
—oo
Yo

in equations 1 and 2, and rearranging results in the
following non-dimensional set of equations,
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where y is the normal depth of flow, u is the normal
flow veTocity, Y is the non-dimensional” flow depth, U
is the non-dimensional average velocity, X is the non-
dimensional longitudinal distance, T is the non-
dimensional time, and Fo is the normal flow Froude
number given by
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If the Chezy equation (Henderson 1966) is used to
determine the friction slope, i.e.
v = ¢ [rs]t/? (10)

and it is assumed that, for a wide rectangular channel,
the hydraulic radius (R) is equal to the flow depth
(y) then it can be shown that

(11)

11 into equation 8 results in
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Substitution of equation
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which with equation 7, constitutes a set of partial
differential equations in the two non-dimensional
dependent variables (U and Y).
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3= SOLUTION OF UNSTEADY FLOW EQUATIONS

Description of an iterative matrix implicit algorithm
with a four-point finite difference scheme for the
solution of the dynamic wave equations can be found in
many publications, e.g. Fread (1974), Amein and Chu
(1975) and Cunge et al (1980). The essence of the
four-point scheme is to express the dynamic wave
equations in finite difference form based upon the
values at the four-nodes which form the corners of a
box, see Figure 1,
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Figure 1: Four Point Implicit Scheme Grid.

Using the finite difference approximation
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equations 7 and 12 can be written as

n+l  n+l _n+l n+l
Cj (Uj’ Yj' Uj+I’ Yj+1) = 0 (16)
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where the subscript and superscript refer to the
spatial and temporal locations respectively.

For the case of N nodes along the channel, there are
N-1 boxes and 2N unknown variables, i.e. U and Y at
each of the N nodal locations. An additional two
equations are obtained from consideration of the
boundary conditiions, i.e.
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for subcritical flow conditions in the channel.

Solution of the resulting set of 2N nonlinear
equations is by utilisation of an iterative matrix
technique proposed by Amein and Fang (1970) which is
based upon the use of a generalised Newton-Raphson
technique.

4. BOUNDARY CONDITIONS

Only subcritical flow cenditions in the river channel
were of interest in this study. Consequently the
required boundary conditions consisted of one
relationship at both the upstream and downstream
boundaries of the channel.

Upstream Boundary Condition

At the upstream extremity of the river channel, the
boundary condition used was a requirement for normal
flow conditions to occur. This requirement can be
expressed algebraically as

S - 8 =10 (20)

Rearrangement of equation 20 and substitution of
equation 11 results in

2 = d = (21)
which was the upstream boundary condition used in the
study reported in this paper.

Downstream Boundary Condition

At the downstream extremity of the channel, the
boundary condition used was a relationship between the
depth in the channel and the time, i.e.

Y = §(M (22)

To approximate the tidal cycle, a sinusoidal relation-
ship was used. This relationship took the form of

Y = K + A'sin {2 wT]
o (23)

where K is the depth of flow in the channel at mean
sea level, A is the amplitude of the tidal cycle, and
o is the tidal period.

5. APPLICATION OF MODEL

The model discussed in the preceding sections was used
to determine the interaction between the tidal cycle
and river flows for alternative values of the following
parameters:-

115 Fo - Froude number of normal flow in the river,

2. A - amplitude of the tidal cycle,
3 K - flow depth in the river at mean sea level,
4. o - tidal period.

In each series of tests, one of the above four para-
meters was varied while the other three retained
constant values.. Consequently from the four series of
tests undertaken, an assessment of the influence of the
four non-dimensional parameters can be obtained.

The first test considered the influence of the tidal
period upon the predicted peak depth along the channel.
Shown in Table 1 are the predicted peak non-dimensional
depths along the channel for non-dimensional tidal
periods of 10, 20, 30 and 40. Investigation of Table 1
reveals minimal variation in the predicted non-
dimensional peak depths.

The next test considered the influence upon the
predicted peak non-dimensional depth of the Froude
number. For the four alternative numbers considered,
i.e. Fg = 0.05, 0.01, 0.005 and 0.001, the peak non-
dimensional depths predicted along the channel are
shown in Table 2. Similar to the influence of the
tidal period, the magnitude of the Froude number does
not significantly influence the predicted peak depths
along the channel.
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DISTANCE DISTANCE
UPSTREAM FROM o =10 g =20 =i 30 a = 40 UPSTREAM FROM A=0.5 A=1.0 A=1.5 A=2.0 A=2.5
RIVER MOUTH RIVER MOUTH
0 3.000 3.000 3.000 3.000 0 4.000 5.000 5.500 6.000 6.500
1 2.057 2.061 2.063 2.063 1 3.516 4.011 & 4,508 5,005 5.504
2 1.287 1.296 1.300 1.299 2 2.558 2,097 2.559 3.039 3.528
3 1.020 1..022 1.024 1.024 3 1.671 2.097 1.675 2.101 2.566
4 1.001 1.001 1.002 1.002 4 1.115 1.329 1.675 1.334 1.689
5 1.000 1.000 1.001 1.001 5 1.008 1.031 s B i} 1.334 1.689
6 1.000 1.000 1.000 1.000 6 1.001 1.003 1.009 1.037 1.143
7 1.000 1.000 1.000 1.000 7 1.0000 1.001 1.003 1.009 1.039
8 1.000 1.000 1.000 1.000 8 1.000 1.000 1.001 1.001 1.009
Table 1: Influence of Tidal Period Table 3: Influence of Tidal Amplitude
DISTANCE DISTANCE
UPSTREAM FROM F 2 = F %= F2?2= P2 = UPSTREAM FROM K=2.0 K=2.5 k=3.0 K=3.5 K=4.0
RIVER MOUTH  0°05 0%01 "0%005 02001 RIVER MOUTH
0 3.000 3.000 3.000 3.000 0 3.000 3.500 4.000 4.500 5.000
i 2.062 2.065 2.065 2.065 1 2.065 2537, 3.028 3.515 4.011
2 1.299 1.307 1.308 1.308 2 1.308 1.658 2.087 2,552 3.034
3 1.023 1023 1.027 1.027 3 1.027 1.110 1.323 1.670 2.097
4 1.002 1.002 1.002 1.002 4 1.002 1.007 1.030 1.114 1.329
5 1.001 1.001 1.001 1.000 5 1.001 1.001 1.003 1.008 1.031
6 1.000 1.000 1.000 1.000 6 1.000 1.000 1.003 1.008 1.031
7 1.000 1.000 1.000 1.000 7 1.000 1.000 1.000 1.000 1.001
8 1.000 1.000 1.000 1.000 8 1.000 1.000 1.000 1.000 1.000
Table 2: Influence of Froude Number Table 4: Influence of Entrance Depth

The last two test series considered the influence of
the non-dimensional amplitude of the tidal cycle

and the non-dimensional depth at the mouth of the
river channel at mean sea level. Peak non-
dimensional depths along the channel predicted

during these two test series are shown in Figure 2 and
3 respectively. Investigation of Figure 2 reveals
that the predicted non-dimensional depths, for the
alternative tidal amplitude considered, have a
consistent variation from each other in the lower
reaches of the river, i.e. the predicted depths plotted
as a function of their location result in a series of
parallel lines. As the magnitude of the amplitude
increases, this effect extends further upstream.
all cases the variation between the predicted non-—
dimensional depths was identical to the difference
in the non-dimensional tidal amplitude. For the
alternative tidal amplitudes considered, i.e. A = 0.5,
1.0, 1.5, 2.0 and 2.5, the predicted depths along the
channel are detailed in Table 3.

In

Consideration of Figure 3, which shows the variation
in the predicted non-dimensional peak depth along the
channel with a variation in the non-dimensional
parameter K, reveals a similar influence. In the
lower reaches of the river, the variation in K results
in similar variations in the predicted non-dimensional
depths of all five values of K considered, i.e., K =
2.0, 2.5, 3.0, 3.5, 4.0. Detailed in Table 4 are the
predicted depths along the river channel for the
alternative values of the non-dimensional parmeter K.

6. CONCLUSION

A numerical model which solves the non-dimensional
unsteady flow equations has been developed to consider
the interaction between the flow in a river channel
and the action of the tidal cycle. This model was
used to determine the sensitivity of the model to four
non-dimensional parameters, the normal flow Froude
number, the period of the tidal cycle, the amplitude
of the tidal cycle and the non-dimensional depth at
the mouth of the river channel for mean sea level
conditions. It was found that for the first two non-/
dimensional parameters, i.e. the normal flow Froude
number and the tidal period, there were minimal

variations in the predicted peak depths along the
channel.
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NOTATION

- Tidal Cycle Amplitude

Downstream Boundary Condition

-  Upstream Boundary Condition

=  Chezy Resistance Coefficient

- Continuity Equation

Normal Flow Froude Number

- gravitational acceleration

- flow depth for mean sea level at downstream
boundary

-  Momentum Equation

=  Hydraulic Radius

- Friction Slope

=  Bed Slope

- Non-dimensional Time

- time

-  Non-dimensional velocity

Velocity

- Normal flow velocity

-  Non-dimensional longitudinal distance

- Longitudinal distance

-  Non-dimensional flow depth

- Flow depth

- Normal flow depth

-  Tidal period
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Figure 2: Peak Non-Dimensional Depth Along Channel

for Varying Tidal Amplitude
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Figure 3: Peak Non-Dimensional Depth Along Channel

for Varying Flow Depth at Mean Sea Level



