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ABSTRACT

A procedure for determining the flow which
results from introducing a large two-dimensional
obstacle of finite height into an arbitrary
stable stratified shear flow of finite depth is
described. The method is based on a
generalization of the known results for two-layer

flows, described in Baines ' (1984), and the
assumption that mixing in . the @ fluid s
negligible. For a given initial flow, obstacles

with height greater than a critical height must
generate disturbances which alter the incident
flow far upstream. These disturbances may take
the form of an upstream hydraulic jump or a
time-dependent rarefaction, or both, depending on
the non-linear dispersive properties of the
system. This behaviour may be manifested by more
than one mode in turn, as the obstacle height
increases. A specific example of a three-layer
flow with a relatively thin wupper layer
(approximating conditions in some £fjords) is
described in detail.

INTRODUCTION

For the most part, the subject of hydraulics is
concerned with the flow of homogeneous fluid
(water) through a system where the flow changes
gradually with the horizontal co-ordinate so
that the flow is hydrostatic, except for
particular regions where it may change abruptly
(eg. hydraulic jumps and energy dissipation
structures) . In many systems of geophysical
and engineering interest the fluid is not

homogeneous but is density stratified, implying
that the density of the f£fluid increases with
increasing  depth. This density  variation

introduces a range of dynamical phenomena which
are associated with internal gravity waves and
have corresponding time scales, and which are
important in a number of situations, such as
flow in stratified fjords, straits, reservoirs
and estuaries, as well as the atmosphere. Many
of these phenomena have their analogues in open

channel hydraulics, but the variety of
phenomena in the stratified «case is much
richer.

In this paper we will discuss the hydraulic flow
of stratified fluid over bottom topography, where
the term "hydraulic" is taken to imply that the
topographic variations are gradual so that the
flow is mostly hydrostatic. We will approximate
the stratified fluid by a number of homogeneous
layers n, numbered from the bottom upwards. Above
layer n we may have either a rigid horizontal
surface or an infinitely deep layer of uniform

density. In principle, a sufficient number of
suitably chosen layers will give a satisfactory
approximation to any continuously stratified
stable shear flow. We proceed to discuss the
properties of single and multi-layered models,
and, based on experience with one - and two-layer
systems which have been studied in detail (eq.
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Baines 1984) we describe a general procedure
which may be used to determine the behaviour of
multi~-layered fluids over long obstacles of

finite heights. We then give some typical
results for a three-layer system which
illustrates a broad range of flow types. More

details of the method and its results are given
in Baines (1986) and Baines & Guest (1986), and
an up-to-date overall review of stratified flow
over topography is given in Baines (1987).

SINGLE-LAYER HYDRAULICS

As a point of comparison, we first briefly
summarize the hydrostatic flow of a single
layer over topography. Flow states which
result from the impulsive commencement of flow

with velocity u of a layer of depth d_over an
obstacle of maximum height h depen% on two
dimensionless numbers: t initial Froude
number  F = u/(gd) and H=h_/d ;

corresponding steady-states are shown in iq?l
of Baines (1984). Regions where the flow is sub
or supercritical, partially blocked upstream or
totally blocked may be seen. There is even a
region where the flow may be partially blocked
or supercritical, the state obtained depending
on the past history of the flow (for example,
the speed of start-up); this implies a
hysteresis in the system. When the flow is
partially or totally blocked the upstream
disturbance has the character of a hydraulic

jump and the flow is ,"controlled" by the
condition that F=u/(gd) =1 at the obstacle
crest. Using the Bernoulli and mass

conservation equations, the properties of
hydraulic jumps and this control condition, the
detailed properties may be calculated. Our
objective in this paper is to show how to
obtain the corresponding information for
multi-layered systems.

PROPERTIES OF LAYERED MODELS

The equations governing hydrostatic motion of n
incompressible layers of fluid with horizontal
velocity u, (x,t), thickness d, (x,t) and density
p. may be Expressed as (eg. Lee & Su 1977)
where p 'is the pressure at the top of the nth
layer Snd h is the height of the bottom
topography. For simplicity we will restrict
consideration to systems with a rigid upper
boundary; the treatment for a free upper
boundary follows similar lines. For
steady-state flows equations (1) and (2) may be
integrated to give
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det [ 1] = 0 (10)

Equation (9) normally implies that the flow is
symmetric at the crest of an obstacle so that the
downstream flow state is the same as the upstream
flow. The other possibility, egqu.(10), may be
shown to be equivalent to the condition that some
internal wave mode (n=m, say) has zero
propagation speed (relative to the topography) at
this point (Benton 1955, Baines 1986). This
means that the flow is ‘"critical"™ in the
hydraulic sense with respect to this mode, and
that this point acts as a "control" on the flow
when this condition is satisfied. For a
stratified (layered) flow, such a "control" is a
much weaker condition than it is for a single
layer. For an n-layered system we will have
n-1 internal wave modes with a total of 2(n-1)
wave velocities (positive and negative). We
assume that all of these wave speeds are real,
implying that the flow is stable to long-wave
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disturbances. The speed and structure of these
various modes may be obtained from studying
linear disturbances to equations (1) and (2).
In particular, linear disturbances may have
infinite wavelength; these are termed columnar
disturbance modes.

For our general model of stratified flow over
topography, treated as an jinitial-value
problem, we expect that in some cases upstream
hydraulic jumps will occur. Hydraulic jumps
may be modelled as regions where the flow
changes abruptly from one uniform stream to
another. They propagate at constant speed, and
their overall properties do not change with
time. In order to establish relationships
between conditions upstream and downstream of
hydraulic Jjumps in systems with two or more
layers, some assumptions are required. The
question of the most appropriate assumptions is
controversial (Woed & Simpson 1984), but the
following are the most commonly used (since Yih

& Guha 1955): i) each layer maintains its
. identity, density and mass flux through the
jump, ii) the flow in the jump is hydrostatic,

or sufficiently so for our purposes, and iii)
the mean value of the ith layer thickness in
the jump is equal to the mean of the upstream
and downstream values, With these assumptions,
equations relating the conditions upstream and
downstream of the jump may be derived (Su 1976,
Baines 1986). As jump amplitude tends to zero,
jump speed approaches a linear wave speed. In
general jumps dissipate energy, although this
dissipation may vanish in some cases.

THE GENERAL METHOD

We now give an outline of the general procedure
for calculating stratified flow over finite
topography, and its physical .basis. Space
obviously precludes a detailed discussion, and
the procedure is embodied in a set of computer
programmes which permit its application to a
wide range of situations. We begin with a
known flow without topography and define a mean
velocity U = Q/D, where D is the total volume
flux; U will be a constant, independent of x
and t. We may then define an initial Froude
number Fo by

Fo = =
=
=
where c, is the wvelocity of the fastest linear
internai wave mode propagating against the

frame of the topography.
c, may be positive (directed downstream) or
negative (directed upstream). We describe the
procedure in three stages, each corresponding to
progressively higher obstacles, and assume that
o F .1, so that at lease one mode may propagate
upstream. An implicit assumption is that at no
point does the mass flux in any layer become
reversed in direction {relative to the
topography) as a result of topographic effects.

stream in the (rest)

B - -
S i
x ax | "17%
dd2 o
T 2.1
(7
ddn—l . )
dx n-1 gn




Stage 1

As the obstacle height is increased from zero,
the steady-state solutions for the flow are
only altered over the obstacle. At dh/dx=0,
equ. (9) is satisfied, so that the upstream and
dowrstream flows are the same and are equal to
the initial undisturbed flow; changes which
take place on the upstream slope are reversed on
the downstream slope. This situation is obtained
until h  reaches a critical height h {which
depends on F ), at which point equ. (10) is
satisfied, and a wave speed vanishes for some

mode (say the ith). With this given upstream
profile, obstacle heights h > h are not
possible. n g

Stage 2

If the obstacle height is increased very slightly
(infinitesimally) above h by an amount Ah, the
flow will adjust locally so that it is again
critical at the obstacle crest for the same ith
mode. This will require a small linear
disturbance, in the form of a columnar
disturbance mode, to be sent upstream and to
alter slightly the oncoming velocity and density
profiles in the new steady state. This
disturbance will have the structure of the same
ith mode, will have amplitude Ac (say), and will
travel upstream at the long-wave speed of the ith
mode, ci.‘

If the obstacle height is increased by a further
infinitesimal amount, this process will be
repeated: the flow will adjust to a slightly
different state at the obstacle crest, which will
again satisfy ¢, = 0, and a linear columnar
disturbance mode will propagate upstream at the
linpear wave speed, altering the oncoming flow
which approaches the obstacle. Here, however, we
must make an important distinction between two
different cases. The propagation speed of the
new upstream disturbance may be written ¢, + Ac,,
where AOc. denotes the difference in spéed from
the previous value. This speed will be slightly
different because the second disturbance will
propagate on the slightly modified flow behind
the first disturbance. Ac., may be positive or
negative. If Ac, is positive or zero, the second
disturbance will never catch up to the previous
one, and the flow over the obstacle is determined
by these physical processes alone. If, however
Ac, < 0, the second disturbance will catch up
with the first one and increase its amplitude.
.This will form, in effect, an infinitesimal
hydraulic jump. As discussed above, a hydraulic
jump travels at a speed which is dependent on its
amplitude, and jump conditions may be found which
determine the nature of the flow: on' the
downstream side. Once the jump has formed, this
flow will in general be different from that which
was present behind the second upstream
disturbance. This difference ' will then be
communicated back to the flow in the vicinity of
the obstacle and cause further adjustments there.
These changes will in turn affect the jump, and
the flow will finally reach a steady state when
the jump amplitude is adjusted so as to be
consistent with a critical flow state at the
obstacle crest,

If the obstacle height is increased still further
and successive values of Ac, all have the same
sign, these processes will™ be repeated. The
result in the first case (Ac, > 0) will be a
succession of upstream disturhénces which become
increasingly spread out, forming a rarefaction,
and the result in the second case (Ac, > 0) will
be a progressively larger hydraulic jﬁmp. These
two different types of upstream motion and the
conditions determining them may be summarized.by
saying that
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dc,
EEE < 0 implies a hydraulic jump ,
and
dci
= > 0 implies a rarefaction ,

where .c, denotes the propagation speed of the
ith modé, which is the mode that is critical at
dh/dx = 0, and o denotes the upstream amplitude
of this mode. Expressions for dc,/da may be
obtained in terms of the mean flow properties
and the structure of the relevant
eigenfunction. It is important to note that c,
and © are cumulative wvariables, in the sens@
that the following disturbances propagate on
and add to previous ones. The structure of the

corresponding eigenfunction also changes
continuously. If the upstream amplitudes of
these disturbances are small the resulting

flows calculated assuming one or the other flow
type will be similar, but as the amplitude
increases the flow properties will diverge.

Both of these physical processes may be
calculated numerically with the wuse of
algorithms given by Su (1976) and Lee & Su
(1977) .
Stage 3

The above procedure may be followed to give the
flow over progressively higher obstacles until
one of two things happens. "These are (i) the
flow immediately upstream of the obstacle may
become critical (with respect to the ith mode,
so that c, =0 Jjust upstream) or (ii) the
velocity of some layer U, may become zero just
upstream. We now discuss each of these
situations in turn.

(i) Critical flow upstream; c, decreases to
Zero. Here the current upstréam disturbance
must be a rarefaction. When ¢, becomes zero
upstream the flow over the tcp&hraphy must be
supercritical with respect to this mode. If the
ith mode is in fact the fastest upstream mode,
this will be applicable for obstacle heights up
to the maximum h = D, If the ith mode is not
the fastest, then the next-fastest mode (say
the i-1th) will become critical at the obstacle
crest (i.e., c, . = 0 there) at some value for
the cobstacle héi%ht.

(ii) Blocking. The addition of upstream
disturbances always (i.e., in all known
experimental cases) has the effect of reducing
the oncoming velocity in the lowest layer. If
condition (i) does not occur, this velocity may
decrease until the lowest layer (or possibly

some higher layer) comes to rest. If the
lowest layer is blocked, experimental
observations show that additional upstream
disturbances (caused, say, by raising the

height of the obstacle) will result in ‘this
layer remaining at rest and will reduce the
oncoming velocity of the second-lowest layer.
For this to occur, the upstream disturbances
must be more complicated than previocusly. 1In
general they will consist of two disturbances -
a faster mode and a slower mode, of which
either may bhe a jump or a rarefaction, and
which +together result in the lowest layer
remaining at rest, but with an altered
thickness. The treatment of these situations in
practice is more complex and will not be gone
into here.

A SPECIFIC EXAMPLE

We describe here the results for a three-layer
system when the density increments across each
interface are the same, but the upper-most
layer has half the thickness of each of the
other two. This situation is a realistic
approximation to the stratification in some
fjords and gulfs. The results of applying the
above procedures are
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Fig. 1: Regime diagram for steady-state flow patterns for a three-layer hydrostatic flbw, impulsively

started from rest at speed U.

increments &__, are equal, with (&

with respect to one of the modes at the obsta

the rarefaction type.

shown in Fig.l; this diagram shows the various
flow regions in terms of Fo and H = hm/D.

The upstream disturbances in the shaded regions
are of the rarefaction type. The region where
the topmost layer is stagnant or "blocked" is of
particular interest. [Layer 3 becomes blocked
before layer one because the upstream columnar
"slow mode" reduces the layer 3 velocity more
than layer 1 in this non-uniform density
structure. There is even a regime where both
layers 1 and 3 are at rest upstream.

In conclusion, I have given a brief outline of
a general procedure for calculating the flow
properties of stratified fluids over long
topography of arbitrary amplitude, along the
lines of "conventional" hydraulics. Attention
has been focussed on flow properties on the
upstream side and over the obstacle, where
effects due to strong mixing events downstream
(should they occur) would be minimal. The
procedure is  based on sound mechanistic
principles  extrapolated from verified properties
of one and two layer systems.
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