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ABSTRACT

An efficient computational algorithm is used to model
the two-dimensional flow field upstream of a surface
mounted bluff body. Computationally, the Bernoulli
variable, H, is introduced in place of the pressure.
This variable has the advantage of changing less than
the pressure in certain critical parts of the flow
domain. The incompressible Navier-Stokes equations,
written in terms of u, v and H, are solved using the
efficient group split finite element formulation
(Fletcher; 1984, 1985). Numerical solutions have been
computed for a flow field which includes a separation
bubble having both laminar separation and laminar
attachment.

INTRODUCTION

The flow in the stagnation region of a bluff body in-
tersecting a flat plate is complicated by the accumula-
tion of lateral vorticity ahead of the body and the
redeployment of this vorticity into the streamwise
direction as the flow sweeps past the body. The net
effect is a separation of the symmetry line flow ahead
of the body and the appearance of a horseshoe vortex
structure wrapped around the bedy; both Thwaites (1960)
and Hunt et al. (1978) illustrate this phenomenon.

Flows of this type occur at wing/body junctions of air-
craft, endwall/turbine interfaces in turbomachinery

and around bridge piers in rivers. Practical interest
exists in predicting such flows to alleviate, ultimate-
ly, the reduction in lift and increase in drag for the
first case, the loss of turbine/compressor efficiency
in the second case and the scouring of river beds in
the third case.

This three-dimensional flow behaviour has been examined
experimentally by Stanbrook (1959), Peake et al. (1965),
Shabaka (1979) and Langston (1980), amongst others.
Computational models for this type of flow have,
typically, been based on boundary layer analysis which
is capable of predicting the upstream separation but
not the complex vortical interactions, (Sharma and
Graziani, 1983). The obvious need for an efficient
computational model which will accurately predict the
flow behaviour near a wing/body junction is the motiv-
ation behind the present work.

The problem investigated here is that of a two-dimen-
sional decelerating flow upstream of a surface mounted
bluff body. This flow is not totally unlike a cross-
section — through the plane of symmetry - of the three-
dimensional junction problem, although in two dimensions
the flow is unable to "escape" around the side of the
bedy. In the present computational problem the incom-
pressible Navier-Stokes equations will be solved.

A conventional pseudo-transient formulation in terms of
the primitive variables, u,v,p (in two-dimensions) is
rather uneconomical. For incompressible flow the un=
coupling of the continuity equation is an added compli-
cation. In this paper a different strategy is adopted.
The Bernoulli variable, H, is used instead of the pres—
sure, since this variable will change less than the
pressure in certain critical parts of the region. The
Navier-Stokes equations can now be written in terms of
u,v and H (see equations (2), (3) and (&) below). The
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numerical solution of these equations is structured as
follows. First the x-momentum equation is put into an
equivalent unsteady form and then discretised into un-—
coupled systems of algebraic equations for each grid-
line, (Fletcher, 1984; Fletcher and Srinivas, 1983,
1985). Each step in time will therefore result in a
correction to the u velocity component. The y-momentum
equation and the continuity equation will provide an
appropriate update of H and v at each time step.

A pseudo-transient correction to the v velocity compo-
nent is obtained in a similar fashion, in this case the
roles of u and v will be reversed. This sequential
algorithm will be explained more fully in a later
section. The numerical solutions show, for Reynolds
numbers of 50 and 100, the presence of a separation
bubble having both laminar separation and laminar
attachment.

EQUATTONS AND BOUNDARY CONDITIONS

For external flows that are inviscid and irrotational
far from an isolated body it is advantageous, compu-
tationally to introduce the Bernoulli function in place
of the pressure. 1In two dimensions the Bernoulli func—
tion can be written - in dimensional variables - as

H=p% p(u? +v?)/2 (1)
In the inviscid and irrotational region away from the
body H becomes constant whereas the pressure, p, ad-
justs to the changing velocity field. This follows
directly from the governing equations for steady two-
dimensional incompressible viscous flow, written in
non-dimensional form as,

5 B

vuy T + Hx - V°u/Re = 0 (2)

- —_— 2 =

uu +uvx + Hy V*v/Re = 0 (3)
= 4

u, + vy 0 (4)

where the Reynolds number is given by Re = UmLfU’

(L a suitable lengthscale). Equations (2) and (3) are
the x and y momentum equations respectively and equa-
tion (4) is the continuity constraint. 1In the inviscid
outer region the governing equations will reduce to
Laplaces equation, V2¢ = 0, where ¢ is the velocity
potential.

Appropriate boundary conditions for the above equations
can be derived for a particular domain of interest.

For the "corner" geometry (which is infinite in both
coordinate directions - see Figure 1) the inflow and
outflow conditions play an important role in deter-
mining the nature of the solution. Here the extent of
the computational domain is assumed large enough so
that boundary-layer approximations can be applied at
both inflow and outflow boundaries. At the inflow
boundary a Dirichlet condition is given for v; u is
determined from the interior solution together with the
boundary layer assumption that u,, = 0 at inflow. H is
determined by integrating a reduted form of the x-mo-
mentum equation along the inflow boundary. H is given
a constant value at the grid point furtherest from the
corner, here the flow is assumed inviscid and irrota-
tional. At the solid boundaries u=v=0 and H is calcu-
lated from the interior solution. At the outflow
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boundary u__ = 0 and a reduced form of the y-momentum
equation is used to calculate H.

T/L=1.8 7 V PRESCRIBED

/]

7] Uyy =8

/]

/]

/]

7 b
7 2
f = T,V o a
A v | =
15 = |2
2 S X,u ©
7] = =
; [ o
7] = i
7 S| E
/ =
; o

Y/L=0.8 ) U=y=~1
* 7Pl A7 7777
X/L=0.8 X/L=1.8
Fig. 1: Computational domain and boundary conditons.

NUMERICAL FORMULATION

For the present problem an efficient sequential algo-
rithm can be constructed as follows. First eq. (2) is
written - with the aid of the continuity equation -

in pseudo-transient conservation form,

u, + (H+ ulfs - v2/2)x + (uv)y - V2u/Re = 0 (5)

where time will be used to provide a convenient itera-
tion path.

A group finite element formulation (Fletcher, 1983)

with linear Lagrange rectangular elements is introduced.

This produces the following semi-discrete form of eq.
(5) (for internal nodes),

_ 219 _ 2 -
MKQHyut MyQLx(H +u*/2 - v*/2) MXQLy(uv)

+ [My ® L, +tM® Lyy]u/Re = RHS (6)
where @ denotes the tensor product and the direction-

al mass operators (Fletcher and Srinivas, 1984, 1985)
are defined by

-_ t =
M ={1/6, (1+t))/3, r /6], Mo = {r /6, 4z ) /3, 1/6}
7y
and directional différence operators by
Lo 2%{-1,0,1}/Ax and L = {1, -(1+1/r), 1/r }/ix?
(8)

similarly for L and L In eqs. (7) and (8) Lo and
ry are the grid grnwthy¥atios, i.e.

r = (x

x = Cgan = XG0 ) vy = Gy G575y )

(9)

Since only the steady-state solution of eq. (6) is of
interest a linearised backward Euler (Newton-like) time
discretisation is introduced as

1 n+l

Mxeuy.ﬁu“+ = aeruS™ = AcrHS™ + (ORHS/0u)Au

n+l n+l n
=u LT

(10)
where Au

Equation (10) represengila linear system of equations
for the corrections Au » and can be solved approxi-
mately by introducing a very efficient coordinate split-
ting or factorisation (Fletcher and Srinivas 1984,1985).
This leads to the following two stage algorithm

[v, - At{(1/Re)L_, - 2L u}Jau* = AtRHS" (11la)

[, - ae{a/Re)L,, - Lyv}]Aun+l = Au* (11b)
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At each stage the solution of (1lla) or (11b) involves
only operators associated with a particular coordinate
direction. This permits a decoupling of the equations
and the efficient implementation of banded Gauss eli-
mination along each grid-line in turn. The RHS term
has been treated as a function of u only. Strictly

it is also a function of v and H. However to avoid
the solution of relatively expensive block tridiagonal
systems the remaining momentum equation, (3), is ex-
ploited (at different stages of the sequential algo-
rithm) to obtain updates of H and v for each step of
the iterative solution of equation (11).

Along the inflow boundary H is determined from a reduced
form of the x-momentum equation - the u term is as-
sumed negligible here. With H a known tonstant in the
far field, this equation is integrated towards the side
wall. Utilizing equation (4), the y-momentum equation
can be written in the.form,

(H - u?/2 +ux/Re)y = vxx/Re - uv (12)

Integrating (12) from the inflow boundary (where H is
now known) toward the solid boundary will determine H
over the remainder of the domain. With this update of
H in the RHS of equation (6), a subsequent iteration of
equation (11) will produce a new correction for the u
velocity component. Having updated u, the v component
can be calculated from the continuity equation. A one-
dimensional finite element discretization of (4) pro-
duces

Lyv Myq (13)
where gq(=u,) is calculated using central differencing.
Equation (13) - which is effectively a numerical integ-
ration of (4) by Simpsons rule - is marched away from
the solid wall up to, but not including, the inflow
boundary; v is already prescribed at this boundary.

For the first step out from the wall v is calculated
using a trapezoidal integration of (4).

In a similar manner a pseudo-transient update of v is
carried out by simply reversing the roles of the momen-
tum equations in (5) and (12) and equation (4) now up-
dates u instead of v. These two calculations will
follow each other sequentially. Thus, at each pseudo-
transient correction of v, say, the RHS term will con-
sist of a recently updated H variable and two velocity
components; of which the u component is determined

from the previous pseudo-transient step and the v
component from the resulting continuity correction.

At the start of the iteration the u and v components
are chosen so that the continuity condition will be
satisfied throughout the computational domain.

RESULTS AND DISCUSSION

The numerical method described in the preceeding
section is illustrated by application to a two-dimen-
sional bluff body flow for the computational domain
shown in Figure 1.

Representative streamline patterns produced by the
present method are shown in Figures 2, 3 and 4. These
results correspond to Reynolds numbers of 10, 50 and
100 respectively. The effect of increasing the Reynolds
number can be appreciated by comparing these solutions.
In Figure 2, corresponding to the case Re = 10, the
fluid is carried around the cornmer without exhibiting
separation. For Reynolds numbers of 50 and 100
(Figures 3 and 4) the deceleration of fluid - due to
the upstream bluff boundary - is too severe for a thin
boundary layer to be possible at the wall; more and
more vorticity accumulates in the ever thickening
boundary layer and ultimately separation occurs. In
this case, as far as the outer potential flow is con-
cerned, the presence of a separation bubble will ef-
fectively change the shape of the rigid boundary. As
is evident from Figures 3 and 4 the separation point
shifts upstream as the Reynolds number is increased.
This behaviour has been noted previously for separated
flow, (Leal, 1973; Hancock and Lewis, 1985).



The present results were obtained on a uniform 21x21
grid using a time step of At = 0.001. The "jagged"
appearance of the recirculating eddy could be reduced
through the introduction of a much finer grid in the
neighborhood of the eddy. The precise location of
this reduced grid would be determined from the present
uniform grid results.

Khosla and Rubin (1983) have developed a finite dif-
ference algorithm that shares some common features with
the present method. In particular a Bernoulli function
is used in place of the pressure‘'and determined from
the normal momentum equation. However an auxiliary
velocity potential is introduced to satisfy the conti-
nuity equation. This same velocity potential provides
the complete solution in the outer inviscid region.

In the viscous region the u solution comes partly from
9¢/9x and partly from a viscous component, u_. Conse-
quently continuity and x-momentum must be szved as a
coupled system for ¢ and u .

The flow behaviour illustrated here shows similar
characteristics to the decelerated flow investigated
by Leal (1973), where in that case deceleration is
due to an opposing flow rather than a bluff body.
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Fig. 2: Streamline pattern, Re = 10
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Fipg. 3: Streamline pattern, Re = 50
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Fig. 4: Streamline patterm, Re = 100

CONCLUSION

The two dimensional flow upstream of a surface mounted
bluff body has been considered. The incompressible
Navier-Stokes equations (written in the primitive
variables u, v and H, where H is the Bernoulli variable)
were solved using the efficient group split finite
element formulation. The numerical results demonstrate
the ability of the present alporithm to accurately pre-
dict the flow field, which in some cases will include
recirculation, over the computational domain. This
algorithm is currently being extended to the three-
dimensional flow problem upstream of a wing/body
junction.
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