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ABSTRACT

Using a reduced set of Navier-Stokes equations, dif-
fuser flow with large swirl and nearly reversing axial
velocity is simulated using k-e and algebraic Reynolds
stress turbulence models. To simulate such flow in
axisymmetric co-ordinates a multi-sweep algorithm is
required in which the non-linear instability arising
from high swirl in regions of low axial velocity is
controlled by under-relaxation (Armfield, 1986).

INTRODUCTION

Swirling diffuser flow in which axial diffusion is
small may be modelled by solving a reduced form of the
Navier-Stokes equations in which axial diffusion
terms, and all cross stream velocity terms in the
¢ross stream momentum equation, are dropped on an order
of magnitude basis (Armfield and Fletcher, 1986a). The
resulting equation set is then parabolic (Armfield and
Fletcher, 1986b) and may be solved using a single
sweep algorithm marching in the dominant flow, axial,
direction (Armfield and Fletcher, 1985a). Turbulent
quantities in such flows have been modelled using both
Clauser/mixing length and k-¢ models (Armfield and
Fletcher, 1985b). For flows with high swirl in which
the centre-line axial velocity is close to reversal,
the use of such a single sweep method is not possible
due to a non-linear instability arising from the pres-
ence of large swirl in regions of low axial velocity
(Armfield, 1986).

To enable such flows to be modelled a multi-sweep
algorithm is required, which allows the non-linear
instability to be controlled by under-relaxation.

When such high levels of swirl are present the k-€
model gives poor prediction of turbulent quantities
(Armfield and Fletcher, 1986c). In the present paper
an algebraic Reynolds stress model, A.S.M., is presen-
ted for swirling flow in a conical diffuser at a
Reynold's number of 380,000 with significant reduction
in centreline axial velocity. It is shown that the
A.85.M. gives a moderate improvement in the prediction
of such flows.

EOQUATTIONS

The flow is considered to be axisymmetric, incompress-
ible and of constant viscosity. The reduced Navier-—
Stokes equations written in the Reynolds-stress form
using spherical co-ordinates (x,0,¢) and corresponding
velocity components (u,v,w), Figure 1, are
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where u, v, and w are themean velocities and u',v',uw' are
the fluctuating velocities, subscripts denote partial
differentiation, p is the pressure, and the Reynolds
number, Re = pDul/v, D the diffuser entrance diameter
and u! the mean inlet velocity.

(u'v') and (v'w'), the two Reynolds stresses present in
equations (1) te (4), account for turbulent flucuations
in the flow and are obtained using the k-€ model as,

(u'v') = Py ue/x - (5)

(v'w') = -v, fwB/x - w/(x tan 8)), (6)

where v, the turbulent eddy viscosity, is Gy k2/e,
with k, the turbulent kinetic energy, and e, the turbu-
lent dissipation, obtained from their own transport
equations (Rodi, 1972), reduced in the same manner as
equations (1) to (4) (Armfield, 1986).

In the near wall region anisotropic eddy viscosities

vx and vg are obtained from a mixing length formulation
as in Armfield and Fletcher, 1986a, which are then used
to provide boundary values for the k and ¢ fields. 1In
the A.S5.M. Reynolds stresses are obtained by solving a
series of six algebraic equations which are an approxi-
mation of the full Reynolds stress equations. The full
Reynolds stress equations may be written in the follow-
ing co-ordinate free tensor form, with U the velocity,
and T the Reynolds stress.

j S 3 PR |
U0, U Yt T Y, Y Ry By et Dy
(7
where ¢ is the pressure strain correlation, g the

metric tensor and D the diffusion. The modelling
approximations made to equation (7) to obtain the A.S.M.
are as follows
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the first part of the right hand side of equation (9)

is due to Rotta, 1951, the second part is due to Naot,
Shavit and Wolfshtien, 1970.

With the above approximations, the general form of the
equation for the Reynolds stress components, T 1s,
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Once the individual equations for each Tig are Repeated sweeps of the domain are made in the axial

obtained they may be reduced in the same manner as direction, with at each station x" u,v,w,p,k and ¢

equations (1) to (4), Armfield 1986. being evaluated in the manner indicated above, and
those values being used to relax the stored values.

Equations (1) to (4) together with the k-¢ equa- The most recent corrected values at xU are then used to

tions and, when the A.S.M. is used, equation (10), obtain values at x

are solved in the domain x X £ Xy, and 0 ¢ 0 g Oy,

where x; and x, are the spﬁerlcal radii at the
diffuser entrance and exit, and 6y is the diffuser
half angle, i.e. 8 at the wall.

Boundary conditions for u,v and w are,

(i) inlet (x7,8): u=nul, v=yvl, w= 4l

[
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(ii) diffuser wall (x,8w): u o,

(iii) diffuser centreline (x,0): v = w = ug =0,

XX XX

Boundary conditions for pressure are dealt with in the

|

|
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(iv) diffuser exit (x;,8) uyy = Vg = W, = O. l

|
next section. :

Fig. 2: Discretization

RESULTS

Solutions are presented in Figures 3 to 5 for a conical
diffuser with a total angle of 8° and a Reynolds
number of 3.8 x 105. The experimental results of So,
1964, at X/D = 0.6, which is just downstream of the
diffuser entry, are used to generate the initial data
for the computational solution. The computational
solutions have been obtained on a non-uniform grid
40(x) x 40(8). At the diffuser wall xA® = 0.001, and
at the axis xA8 = 0.02.

The k- model underpredicts the centreline axial velo-
city drop (Figure 3), whereas the A.S.M. predicts it
Fig. 1: Spherical Co-ordinates very well. Both methods give very similar near wall
profiles. Figure 4 shows that the A.5.M. also gives
moderately better prediction for the swirl, although

METHOD OF SOLUTION both methods appear to behave in a similar fashion.
Both methods give satisfactory and near identical solu-
The domain is discretized using a variable mesh as tions for the pressure (Figure 3).

shown in Figure 2.

All derivative terms are discretized using finite dif-
ferencing in the following way, convective terms;
hybrid central/upwind, py in equation (1); forward.
all other terms central.

Unknowns u,w, k and £ are obtained from their trans- ®=RESULTS 0OF SO
port equations using a tridiagonal method. The left SOLID LINE=R.S.M.

BROKEN LINE=K-E MODEL

hand side tridiagonal matrix is constructed from the
convective terms and the viscous terms, including, for
equations (1) and (3), the turbulent terms. When the
A.5.M. is used a few initial sweeps are made using
only the turbulent viscosity formulation, and then the
difference between the Reynolds stress evaluated from
the turbulent viscosity and that evaluated from the
A.S.M. is included on the right hand side, at all
points other than the mixing length near wall region.
Thus the tridiagonal nature is retained.

1.00

8.568

Equation (4) is used to obtain v. To obtain p, the
pressure is split into 6 dependent and 9 independent
components. The 8 dependent component is evaluated
using equation (2), and is set to zero at the axis.
The 8 independent component is evaluated using a
mass flow constraint (Briley, 1974). Since py in
equation (1) is forward differenced a downstream B.88 B.25 a.58
boundary condition is required for the pressure. At Li
the exit the axial derivative of the 6§ dependent com-

ponent is set to zero. The B independent components

downstream condition is evaluated implicitly.

g.88 _

Fig. 3: Radial distribution of axial velocity.
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Fig. 4: Radial distribution of swirl velocity.
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Fig. 5: Radial distribution of pressure.

The constants in the k-t model are given the universal
values commonly used; Cy = 0.09, Cey = 1.44, CEz =
1.92, o, = 1.2. A range of values for C) and C;“in the
A.S8.M., equation (10), were tested, the results pre-
sented are for the values; C; = 2.8, Cp = 0.8.

DISCUSSION

The purpose of the present paper is to compare solu-
tions of the reduced Navier-Stokes equations, (1) to
(4), obtained using k-£ and algebraic Reynolds stress
turbulence models. Reduction of the equations is based
on an order-of-magnitude analysis presented in Armfield
and Fletcher, 1986a valid in all but the near entrance
region of diffusers with less than 15° total internal
angle.

On the basis of the satisfactory prediction of pres-
sure it appears that neglecting the secondary terms in
the cross stream momentum equation, (2), is a valid
approximation for the flow considered. Owing to the
simplicity of the reduced equation (2), the 6 dependent
pressure component may be obtained directly from the
swirl profile. This leads to a substantial saving in
computing time, as otherwise the pressure is obtained
from a form of Poisson's equation in which, typically,
several sweeps of the domain must be made to obtain a
suitably converged solution.
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Tt has been shown, Armficld, 1986, that inclusion of
all secondary terms makes very little difference, less
than 10%, to solutions obtained using the k-¢ model for
the present flow. A similar comparison of reduced and
non-reduced forms of ‘the A.S.M. has not as yet been
made. However results obtained with all secondary
turbulent stress terms included in equations (1) and
(3) showed their effect was small. Hence it is sugges-—
ted that inclusion of all secondary terms in the A.S.M.
will not have a large effect for this class of flow.

Armfield and Fletcher, 1985b, have shown that for flows
with low swirl the k-¢ model gives satisfactory predic-
tions, however it is apparent for flows with high swirl,
such as that considered here, the k-¢ model gives poor
results. Various correction factors may be included
into the k-£ model to improve its performance for this
class of flows. Such correction factors are generally
derived from the full Reynolds stress equations using
the same modelling approximations as the A.S.M. Since,
as has been demonstrated, the A.S.M. does give improved
solutions, it is likely that simple correction factors
for the k-€ model can be derived. However, it is sug-
gested that as the A.S.M. does not greatly increase the
computational requirements, it is a better choice for
such high swirl flows, since deriving an eddy viscosity
formulation from it necessarily leads to further
approximations, and hence further loss of information.

Although the A.S.M. leads to improved prediction, it is
evident that, particularly in the swirl solution, fur-
ther development is required. Broadly speaking, such
development can take place in two areas. Firstly, there
is the question of the approximations required to
enable an unclosed set of partial differential equa-
tions, (7), to be modelled by a closed system of
algebraic equations, (10). Similar approximations must
also be made to the k and € equations, to enable them
to be solved. These approximations are based on the
behaviour of thin shear flows, near to local equilibrium,
and with minimal streamline curvature. Streamlines in
the present flow follow a helical path. In regions
where the axial velocity is much larger than the swirl,
the helix is not very tightly wound, hence the stream—
lines are relatively straight. However in regions
where the axial velocity is not large with respect to
the swirl, as is the case in the near axis region of
the present flow, the effect is to wind the helix
tightly, and increase the degree of streamline curva-
ture. It is quite possible that when this is the case
important effects are being lost in the approximations
made to equation (7). The € equation preseuts addi-
tional problems due to, the presence of quantities such
as the production of dissipation, and the dissipation
of dissipation, which are physically impossible to
measure, and difficult to conceive. At present these
terms are modelled inthe same way as terms in the k
equation. Some authors, such as Hah, 1982, consider the
€ equation to be the primary cause of poor results, and
modify it to allow for the effects of streamline
curvature.

The second area is the choice of the constants C1 and
C2. It is suggested by Cibson and Younis, 1986, that
with the present modelling assumptions, satisfactory
results may be obtained by making a suitable choice

for these constants. By considering experimental
results for such flows as homogeneous grid turbulence
downstream of a centraction and flows in local equili-
brium, they obtained the values of C; = 2.8 and Cp =
0.3. With these values they obtained satisfactory pre-
dictions for swirling jets. ‘

The values of C; and C; used in the present paper were
obtained by trial and error, and although a C; = 2.8,
the same as Gibson and Younis, 1986, is used, the C,
value is quite different. Reasons for this may be that
the present flow is complicated by the effect of the
wall and the near reversing axial velocity, making the
assumptions of Gibson and Younis, 1986, less applicable.

CONCLUSIONS

For the class of diffuser flows with high swirl and
nearly reversing centreline axial velocity where the
diffuser total angle is small, pressure may be suitably
modelled by relating the cross-stream pressure variation
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to the swirl profile, as in equation (2), and obtaining
the streamwise pressure variation from a mass flow con-
straint, after Briley, 1974. The poor predictions for
mean axial and swirl velocities of the standard k-t may
be improved by using an algebraic Reynolds stress model.
However, it is apparent that further development of the
A.5.M. 1s required, and it is suggested that in partic-
ular the effect of streamline curvature needs to be
considered.
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