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ABSTRACT

Theoretical investigation of wave force on compound
cylinders is carried out by the linear diffraction
theory. The force and moment functions are derived by
the proper selection of a pressure modification
function, such that the continuity of pressure profile
at the common boundary of ‘the two cylinders is
satisfied. This provides a simpler approach to the
problem as well as closed form solutions for force and
moment  functions due to dynamic component of
pressure. Experimental data obtained are in good
agreement with the theoretical results.

INTRODUCTION

A compound cylinder is a vertical axisymmetrical body
comprising of a cylinder resting on a large
cylindrical base. This particular configuration is
often used as offshore storage tanks, gravity
platforms, etc. This shape is also more suitable for
structures in the Arctic environment as the smaller
cylinder extending to the free surface will provide a
smaller contact surface to the floating icebergs and
the larger bottom cylinder provides a more suitable
foundation against wind and wave loadings.

Considerable research has been done on vertical
circular cylinders subjected to wave induced forces.
The single cylinder has been extensively investigated
under both submerged and surface piercing conditions.
Evaluation of wave forces on compound cylinders was
carried out on the basis of linear diffraction theory
(Isaacson, 1979). This configuration alsoc provided a
useful reference in assessing the negligible influence
of a slendér top cylinder in calculating force on
compound cylinders. The method was an extension of
that used for calculating the wave forces on a
circular dock (Garret 1971). Isaacson expanded the
flow potential into different series in the regions
above and exterior to the lower cylinder, and the
potential and radial velocities were then matched
along the common boundary between the two cylinders.

The paper provides a semi analytical solution for
forces on a compound cylinder based on simplified
assumptions of pressure function.

THEORETICAL FORMULATION AND SOLUTION

Consider the compound cylinder as shown in Fig. 1.
The origin is chosen at the bottom centre of the base
cylinder. The cylindrical coordinate system (r,8,z)
is formed with r = 0 lying around the body axis
and 0 = 0 forming the positive x axis. The parameters
are shown in Fig. 1.

the wvelocity potential for the
flow exists and the problem reduces to the
determination of the velocity potential which
satisfies the Laplace equation

From the assumptions,

V2¢=o (1)

within the fluid region, and is subjected to the
linearized kinematic and dynamic free-surface boundary
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conditions;
2
azi+g'g'$=0 at z = d (2)
ot
1 ¢3¢
e g at] z=d (3)

where g is the acceleration due to gravity and n is
the free-surface elevation measured above z = d.

The linearisation of the motion and the specification
of an incident wave permits the velocity
potential ¢ to be considered as the sum of components
describing the incident (subscript i) and scattered
(subscript s) wave motions

¢ = ¢i + ¢'5 (4)
The free surface and boundary conditions apply to
both ¢ and ¢i and® therefore also to ¢S.

The expression., of the velocity potential and
associated variables in the form of Eg (4) and
involving separation into undisturbed incident wave
and scattered wave components constitute the basis for
diffraction theory. The incident wave potential is
specified in complex form as

>3
- -igH cosh kz -igt .M
1)]._ e oosh Fa z Em.'l. Jm(kr)cos m8 (5)
m=0
where € =1and € =2 for m = 1, 2, 3, ... are the

Jacobi Osymbols and’ J,(kr) is the Bessel function of
the first kind of order m and argument kr.

Similarly the expression for 155 is

_ —igH cosh kz =-iot = ;M 8
4 =50 cosh ka mEO (8 1%, (k) cos m
(6)
where A is an initially unknown (complex coefficient)
and can be easily shown to be, for the bottom
cylinder, given by
Jm' (ka)
= - — 7
X H_'(ka) (7)
m

where the prime denotes differentiation with respect

to the arqument. Similarly, for the top cylinder 'a'
is replaced by 'b' in Eg. (7).
If ¢ and ¢ _denote the complete potential solution
for e botgom and top cylinders respectively, then
; J, '(ka)
_ gH cosh kz -iot i
¢a R cvasB(J1 (kr) _—hH1'(ka) H, (kr)]
(8)
Similarly
- J, '(kb)
gH cosh kz -—iot 1
= = - ———H_(k
% =G ‘cosh X4 cos0(a, (kr) i, T (kD) k) )
(9)
To obtain the force and moment functions, it is

necessary to derive the pressure functions first.
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Pressure functions

Since the dynamic pressure is given by,

3¢

-p 32 (10)

p=
The maximum pressure distribution on the surface of
bottom cylinder (r=a) can be obtained as

-2 pgH cosh kz

Tka H1'(ka)_cosh kd (11}

cos @

Pa(a,e,z) =

Similarly on the surface of top cylinder, Py, can be
obtained by substituting a-= b in Eq. (11).

For calculating forces and moments,
pressure functions given by Egn (11)

the maximum
will be used.

The horizontal force and overtuning moment thus
obtained will be due to the dynamic component of
pressure.

The pressure functions P, and P, are those obtained
if the cylinders of radii a and b were subjected to
waves independently. For the compound cylinder
considered, the following <conditions should be
satisfied: (i) Pressure distribution at the common
boundary of +the c¢ylinders must be the same, and
(ii) For continuous pressure distribution across the
flow, the tangent of the pressure profile must be the
same at z = h.

Therefore at z = h, we assume

BPb

ar ) B (B Pb)

and 3z 9z

aPp = (12)

(13)

where o and B are unknown modification functions for
the pressure distribution so that it is compatible to

the compound cylinder. From Eg (12)
P H_'(kb)
a b.: 1
BiEi—rg = =iy (14)
Pb a 1-11 (ka)
From By (13), it is evident that, at z = h
P ap
a b
L& i e

For a given configuration,
will wvary with depth,
that the pressure
cylinder only, (a=

f[g, %, z] .

the pressure distribution
so will a and B. It is assumed
at the base is due to bottom
1 at 2z = 0), and in elsewhere

a =

Force functions

Consider a horizontal slice of unit height for the
bottom cylinder. The element force per unit height in
the direction of wave propagation is,

txPa(a,G,.z) a cos® 40 (16)

Substituting for P, and integrating, we get the total
horizontal force on the bottom cylinder as,

2apgH 1 R
fa = kaH,i'(ka) S Jr o cosh kz dz (17)
Similarly the total horizontal force on the top
cylinder is,
z d
_ __2bpgH 1
5= kba, ' (kb) cosh ka | 8 cosh kz az §r80
Substituting for B from Eqg. (14), we obtain
2b pgH 1 g
= Les) f a cosh kz dz (19)

e kaH1‘(ka) cosh kd

Thus, the total horizontal force on the compound
cylinder is, £, = f, + f,. The forces can be written

as
by
as
in

dimenfionless force coefficients by dividing them
pgHma /2. The force thus obtained is the maximum,
the maximum pressure distribution function is used
calculating them.

Several empirical expressions for o were tested to
verify the analytical expressions with the
experimentally determined forces on the compound
cylinders and it was found that the most appropriate
expression is

b d -z z.2
a=1-(1 -;) (—h ) (F) (20)
Using BEg. (20), the following expressions for the
force coefficients are obtained for the compound
cylinder.
2 4 1

1 T
o Bgly BT S wakal ' (ka) cosh kd Ge sinh xn +

—4_ (B 1) 1x®h® + 2) sinh kh - 2kh cosh khl +
33 'a
x“h
=ls (1 - E} [(k3h3 + 6kh) sinh kh -
4 3 a
kX h
2.2
(3k“h“ + 6) cosh kh]) (21)

1 2 ab 1
F, = £ /~ pgHma" =

b b"2 ﬂazkal-l1 ' (ka) cosh kd
(L (sinh kd - sinh kh) + —— (2 - 1)

k k3h3 a

[(k2d2 + 2) sinh kd - 2 kd cosh kd -
1
k4h3
2

+ 6) cosh kd -

{(x®n® + 2) sinh Xh - 2kh cosh kh}] +

(1 -2
a

3

L33 + 6kd) sinh Xd = (3k%4

[®h® + 6kh) sinh kh - (3k%h? + 6) cosh ku}1)  (22)

Then, FT = Fﬂ + Fy (23)
For the single cylinder, substitution of b = a into
Eq. (23) yields
4 tanh kd

B, TrakaH1'(ka) k (24)
Eq (24) is the same expression obtained (MacCamy and
Fuchs, 1954) for the total horizontal force on a
single, large vertical cylinder extending to the free
surface.

Substitution of b = 0 into BEgs. (21 and 22) will
reduce Fy to 0 and all terms containing b in F, will
vanish, giving the maximum horizontal force on a
submerged cylinder.

Moment functions

The moment due to the wave force about an axis
parallel to y, passing through the bottom of the
compound c¢ylinder can similarly be obtained using

the a function.

The moment due to wave force on the bottom cylinder

e hooaf
_ _a 25
. ] z 3 dz (25)
and that due to the top cylinder is,
d af
m = [ = = 9 (26)
h
The total moment about the base of the compound
cylinder is me = m, = My
Definin the _dimensionless moment coefficients as
M = m/i ppHTa”, and substituting for @ (Eq. 20), we



can easily obtain

4 1
cosh kd

M =

(L (xh sinh xn -
a kz

1va.2ka!-[1 '(ka)
S e AT dE o o et B =
k4h3 a

arls --g)[(k4h4 +
k™h

n> + 24kh)cosh khl)

cosh kh + 1) +

(3%2K% + 6) cosh Kh-¥ 6] +

2.2 3

12k h” + 24)sinh kh - (4k (27)

4b 1 1
= [ (ka
1Ta3kaH1'(ka) cosh kd ic2

(kh sinh kh - cosh kh)] +

sinh kd - cos kd) -

d (E
k4h3 a

- 1)[(k3d3 + 6 kd)

2

einh k4 - (3k%a% + 6 cosh kd - {(k®h® + 6kh)

2 b

(1 -‘a')

sinh kh ~ (3k°h° + 6] cosh kh}] + —)
5.3

k™h
tocta + 12x%a% + 24)sinh ka - (k78 +

24 kd) cosh kd - {(k°h? + 12k®h% + 24) sinh kh -

(41> + 24 kh) cosh kn}1) (28)

Then MT = M_ + M (29)

a b

The moment function for the single cylinder can be

obtained by substituting b = a into Eq. (47). Then,
MT = = 4 kd sinh ]2<d - cosh kd + 1 (30)
Ta kaH1 ' (ka) k” cosh kd
EXPERTMENTAL WORK
All experiments were conducted in the Hydraulic

Engineering Laboratory of the National University of
Singapore. Tests were carried out on models of the
compound cylinders in a wave flume which is 35.22 m
long and 2 m wide, with a height of 1.3 m, and has an
operating water depth of 1 m.

The models were made of rigid hollow PVC pipe
sections. All experiments were conducted with a fixed
bottom cylinder of 32 cm diameter (a). The diameters
of the top cylindres (b) used were 6 cm, 11.4 cm and
16.4 cm. A single cylinder of 32 cm diameter was also
used in the study. Experiments were conducted for two
depths (d) of water, 32 cm and 68 cm. The heights of

the bottom ‘cylinders (h) used were 16 cm and 34 cm
respectively, so that a h/d ratio of 0.5 was
maintained.

THEORETICAL RESULTS

Force and Moment Functions

The amplitude of the force and moment coefficients
were considered to depend on the diffraction parameter

ka, and the ratios b/a, a/h and h/d [6]. Computer
programmes were used for the computation of these
coefficients for various values of a, b, d and h. Bas

an example of numerical calculations, results are
presented here for the particular case of a compound
cylinder with h/d = 0.5 and a/h = 1.0 in Figs. 2 to
5. Comparison of the predicted results with the works
of Isaacson [6] is shown in Fig. 6.

The variation of force coefficient FT with (ka) (Figs.
2 to 5) is similar to those obtained by Isaacson
however the present study tends to predict a Ilower
values of FT (Fig. 6). The difference in FT was found
to increase as the b/a ratio decreases from 1 to 0.
The single cylinder (b/a = 1) and the submerged
cylinder (b/a = 0) can be taken as the limiting
conditions of the study; the predicted results for
which can be compared with known solutions. The
forces exerted on the various compound cylinders will
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lie between these two exiLreme limits. Isaacson had
presented his results for these limiting cases by
showing good agreement with the predictions of MacCamy
and Fuchs for the single cylinder,

Comparing Fig. 2 with Fig. 4 and Fig. 3 with Fig. 5 it
can be been that for lower values of b/a (< 0.25) the
influence of the top cylinder on FT and MT is not
significant.

EXPERIMENTAL RESULTS
The experimental data for the force and moment

coefficient are plotted in Figs. 7 and 8. The
theoretical curves can be seen to describe the data

well, though the curves are generally found to
overestimate the force and moment at their peak
values. It may be noted that Isaacson's theoretical

results were found to predict still higher forces and
moments compared to the present theoretical results.

A possible reason for higher values of experimental
data compared to the theoretical values, at large
values of ka (»1), is probably due to the formation of
steep waves at large ka which may result in higher
order force contributions due to wave nonlinearity.

CONCLUSIONS

Theoretical investigation to determine wave forces on
compound cylinders was carried out on the basis of
linear diffraction theory. The approach was
simplified by the selection of a pressure modification
function, @« by +trial and error. This function
conforms the pressure distribution with depth for a
single cylinder to that of a compound cylinder and is
given by the empirical expression

b d-z %2
a=1- (1 —;) (T} (F)
Simple and closed-bound solutions for the horizontal
force and overturning moment functions are
established. The theoretical approach is verified by
the well established MacCamy and Fuchs solution for
the wave force on a single surface piercing cylinder.
But comparison with the results of Isaacson show that
the present study predicts lower force and moment
values. Experimental investigations were carried out
to measure forces exerted on laboratory models of the
compound cylinders in a wave flume. The results show
that the theoretical predictions for the peak values
of FT & MT were higher, compared to the experimental
values.

It is found that the effect of a slender top column to
the contribution of total force and moment becomes
negligible when b/a < 0.25.
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