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SUMMARY

A numerical model is developed to describe the bubbling process at a submerged.orifice.

The model

is based on a modified Marker and Cell (MAC) technique and rigorously accounts for the effect on bubble growth

of boundaries confining the liquid flow field.
experimentally observed bubble shapes and growth rates.

Good agreement is demonstrated between the model predictions and
The model is applicable

to both 'deep-pool' and 'shallow

pool' bubbling regimes and clearly shows the development of a high velocity wall jet along the tray floor which

detaches the growing bubble from the orifice.
1 INTRODUCTION

The bubbling of a gas through a liquid is the basis
for many important industrial gas-liquid contacting
processes. Distillation and absorption tray contact-
ors, pyrometallurgical reactors, and hydrogenation of
liquids derived from coal liquidation and oil shale
retorting are but a few examples. In this process the
bubbles are formed by the injection of a gas through

a submerged orifice and a number of theoretical models
have been developed to describe the complex inter-
action which takes palce between the liquid and
injected gas during bubble formation. The earlier
models (Davidson and Schuler (1960), McCann and Prince
(1969) ,Kupferberg and Jameson(1969)) were all based on
the assumption of spherical growth and required the
specification of an arbitrary detachment criteria to
terminate the growth of the bubble. More recently
Marmur and Rubin (1976) and Pinczewski (1981) have
shown that bubble detachment occurs as a natural
consequence of the dynamics of the bubbling system.

Although all of the above models have been demonstrated
to be in reasonable agreement with a range of experi-
mental observations, the agreement is limited to
conditions of 'deep-pool' bubbling. This is because
all the models are based on the simplifying assumption
that the bubble grows in a liquid of infinite extent.
Under conditions of 'shallow-pool' or imperfect bubbling
where the orifice is shallowly submerged and where the
limited extent of the liquid has a significant effect
on bubbling behaviour (McCann and Prince (1971)) the
models are clearly inappropriate.’

The purpose of the present paper is to describe a
general model for bubble growth at a submerged orifice
which is capable of describing the phenomena of non-
spherical bubble growth and which can account for the
effects of boundaries which limit the extent of the
liquid above the orifice. Such a model would be
applicable to all the regimes of bubbling at a sub-
merged orifice. The model described is based on a
modified Marker and Cell (MAC) method (Harlow and
Welch (1965), Chan and Street (1970)) in which the
unsteady, incompressible, axisymmetric Mavier-Stokes
equations describing the liquid flow field about the
growing bubble are solved in the primitive variables
of velocity and pressure using a staggered finite
difference technique.

2. FORMULATION OF BUBBLE GROWTE PROBLEM

A schematic of the bubbling problem is shown in Figure
(1). The orifice of radius Ry is located in the centre
of a plate which separates a gas chamber of volume V
and a liquid of depth H which is bounded by the plate
and the cylindrical wall of the containing vessel.
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Figure 1 - Schematic of Bubble Growth Problem

Gas is introduced into the chamber at a constant
volumetric rate G.

Assuming that the bubble is axisymmetric and that the
liquid is incompressible, the motion of the liquid
bounded by the growing bubble surface, the plate flcor,
the container wall and the air-liquid interface is
governed by the Navier-Stokes equations:
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Where (u,v) are the velocity components in the
cylindrical coordinate directions (r.z) whem € = 1 and
the Cartesian coordinate directions (x,y) where ¢ = 0.
@ is the ratio of pressure to constant demsity (F/pq).
v is the kinematic viscosity coefficient when the
flow is laminar and an effective or eddy viscosity



(Gorman (1969)) which accounts for the effect of
turbulence on the transport of momentum when the flow
in the liquid is turbulent. gy and gy are the body
(gravity) accelerations.

The continuity equation is written as:
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Where D 1s the divergence.

Operating with gx on equation (1) and gy on equation
(2) and then adding the results we have:
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Equations (1) to (4) are the basic MAC equations which,
with the appropriate boundary conditions, may be
solved for the pressure and velocity fields in the
liquid. The velocities may then be used to move
massless marker particles which define the position

of the bubble surface to obtain the evolution of the
bubble surface with time.

2.1 Boundary Conditions
(a) Solid Walls

Since the vessel walls and plate floor containing the
liquid are impermeable the velocity component normal
to the walls must be zero i.e. gy = 0. For the velocity
condition tangential to the wall, the wall may be treat-
ed as either a 'free-slip' or 'no-slip' boundary.
In practice, the effect of the boundary layer at the
wall is usually small and this suggests the use of a
free-slip condition. Moreover, when treating turbulent
flows a non-slip condition at the wall would result in
the generation of artificially large boundary layers
under conditions when the eddy diffusivity is large.
We therefore use the condition 3qp _ 0 throughout.
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(b) Air-liquid Interface

In experimental studies it is usual to maintain the
height of liquid level above the tray constant by the
provision of an overflow wier. In the computations
we have therefore fixed the position of the air-liquid
interface in space and time and prescribed a constant
applied pressure, P, , which is usually atmospheric.

(c) Bubble Surface

The liquid phase pressure, P, at any point on the
bubble surface is related to the pressure within the
bubble, Pb » by,
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where ¢ 1is the surface tension and R is the local
radius of curvature of the bubble surface. Limiting
the present treatment to cases where it is possible to
neglect the effect of gas momencum i.e. p_ ¥ 0, the
pressure within the bubble is everywhere uniform.

The bubble pressure, Py, is related to the chamber
pressure, P., by the usual orifice equation

P - P, = pngﬁ 6)

where K is the orifice coefficient and V;, is the
average velocity of gas through the orifice.

Assuming that the conditions within the bubble are
isothermal, incompressible (p = constant) and that
internal specific energy remains approximately constant,
the flow rate through the orifice is related to the
rate of bubble growth by

1 dv

where A is the area of the orifice and Vy is the
bubble volume which is a function of time.

Further assuming adiabatic behaviour in the gas chamber,
V., the chamber pressure, P., (Kupferberg and Jameson
(1969)) is given by: .
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where C is the sonic velocity in the gas of demsity
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Equations (5) to (8) relate the pressure on the liquid

side of the bubble interface to the rate of gas
injection into the gas chamber G.

P

3 COMPUTATIONAL PROCEDURE

The liquid region is divided into a number of rectang-
ular cells (i,j) of size Ax and Ay as shown in Figure
(2). Velocities are defined at cell boundaries and
pressures at cell centres. If velocities are required
at other locations they are obtained by simple inter-
polation. 1In the present work it was found that the
interpolation was best carried out along lines
normal to the bubble surface. The Navier-Stokes
equations (1) and (2) are differenced using an explicit
central difference form for all the spatial derivatives
except pressure. The results are:
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Figure 2 - MAC discretization of liquid flow field

Equations (9) and (10) allow velocities at time level
(n+1) to be calculated explicitly provided that go+l
values are available. These are obtained from a prior
solution of the pressure equation (4) using an
iterative (point successive over-relaxation) procedure
based on the finite difference analogue of equation (4):
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Where the coefficients "172"3 and nA, are defined in
Figure 3 and Ri P is given by
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Figuré 3 - Finite difference scheme for pressure
solution (equation (11)).

In obtaining equation (11) from equation (4) DET%

is set to equal to zero. This is the unique

feature of the MAC scheme which acts to limit the
accumulation of errors resulting from the finite-
difference approximations as well as computer round-
off.

The initial bubble shape is assumed to be part of

a shpere of radius equal to that of the orifice

( Pinczewski (1981)). The initial bubble pressure is
assumed to be the sum of liquid hydrostatic pressure
and surface tension:
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Initial liquid velocities are assumed to be zero i.e.
the liquid is initially statdiomary.

The numerical solution is advanced through a timestep
of size At by using equations (5)=(7) to calculate
the liquid pressure at the bubble surface. This
together with the specification of boundary
conditions on the solid walls and air-liquid surface
allows equation (11) to be solved for the pressure
field in the liquid at time level (n+l) i.e.gotl,
Equations (9) and (10) are then used to calculate an
updated velocity field udtl and votl,

Tracking the position of the Bubble Surface

Massless marker particles which move with the local
velocity of the liquid are distributed along the bubble
surface (see Figure (2)). A particle density of 2-3
per cell is usually sufficient to resolve the position-
ing of the bubble surface. Velocities of the marker
particles uy and v, are interpolated from the liquid
velocities previously calculated. Velocities at cells
adjacent to the marker particles are used for this
purpose. The new locations of the marker particles
are calculated from:
xn-i-l =
m
n+l
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The new marker particle positions define the new
location of the bubble surface. Repetition of the
above procedures results in a bubble surface which
evolves with time.



4 COMPUTATIONAL RESULTS

To test the validity of the numerical model we

compare our computations with experimental results
reported by Kupferberg and Jameson (1969) for the air-
water bubbling system. The conditions for the
experiment are: Ry = 0.16cm, V., = 2250em?®, G = 16.7cm3
per second and W = 6cm.

The comparison between the model and experiment is
shown in Figures (4) and (5) which show results for
bubble shape and bubble growth rate as a function of
time. The computed results are in good agreement with
the experimental measurements. Figure (4) shows that
the growing bubble becomes detached from the orifice by
a wall jet which establishes along the tray floor late
in the bubble growth cycle.

Effect of Solid Walls on Bubble Growth

Figure (6) shows the computed effect of the proximity
of the solid wall on bubble growth. Two cases are
considered. 1In case "A" the wall is 6cm from the
centreline of the orifice whilst in case "B" this
distance is 2cm. Both computations were performed for
the conditions Ry = 0.l6em, V, = 2250cm®, G = 16.7cm®
per second.
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Figure 4 - Computed bubble shapes for the experimental
conditions of Kupferberg and Jameson (1969).
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Figure 5 - Comparison between model and experimental
data of Kupferberg and Jameson (1969).
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Figure 6 - Computed effect of solid wall on bubble
growth

The results clearly show that the effect of the solid
wall on bubble growth is significant. The bubble

size at comparable growth times is smaller for the case
where the wall is closer to the orifice. This is the
first time that the effect of the wall on bubble growth
has been predicted theoretically.

5 CONCLUSION

A model based on a modified MAC method has been devel-
oped to describe the process of bubbling at a submerged
orifice. The agreement between the model and the
experiments is good and the model shows that bubble
growth is non-spherical abd that bubble detachment
arises as a natural consequence of the dynamics of the
gystem.

Computations based on the model show that bubble growth
is significantly affected by the presence of solid
walls which act to limit the extent of the liquid flow
field. All previously proposed models of bubble
formation assume that the liquid is of infinite

extents and therefore cannot predict this effect of
solid walls on bubble growth. The present model
therefore represents a significant improvement over
previous models and should prove useful in the analysis
of the 'shallow-pool' or imperfect bubbling regimes
where previous models have not been applicable.
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