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SUMMARY

number, incompressible flow; the treatment of advective tranmsport and the modelling of turbulence.

This paper addresses two fundamental and related issues in the numerical modelling of high Reynolds

Both problems

are shown to arise from the need to consider numerical solutions to the governing (Navier-Stokes) equatioms.
Discretisation suggests the need to average physics in order to work in terms of economically resolvable lumped
or averaged quantities and mean mechanisms (Reynolds decomposition and Boussinesq eddy viscosity concept) while

formal identification of discretisation error shows the possibility of spurious numerical mixing.
erations identify the important area of physics/numerics interaction.

These consid-
Flows containing zomes of recirculation

are shown to be a stringent testing ground for model development and results of the author's computations are used
to illustrate the arguments in the context of environmental hydrodynamics (flow past a barrier) and a wind tunnel

simulation (backward facing step).

NOTATION

C, optimised constant in the Prandtl-Kolmogorov law

Cy:Cz50, ,0, optimised constants in the k-t equations

k tugbuLEnce kinetic enmergy

P pressure

qij Reynolds stress tensor

t time

u; vector of time averaged (mean) velocity
components

u vector of instantaneous velocity components

ui velocity fluctuation components

xj Cartesian co-ordinate system (x,y,z)

€ dissipation rate of turbulence kinetic energy

A penalty parameter

v kinematic viscosity

vy  eddy viscosity

p density of the fluid

wy vorticity

I, INTRODUCTION

Fluid Mechanics has traditionally been a subject rich
in classical applied mathematical technique. It is
therefore not surprising to find, since the advent of
the digital computer, a vast literature on computat—
ional techniques in fluid mechanics. The old diff-
iculties, with their unfergiving nature, remain,but
the search for solutions proceeds as optimistic
workers advance into battle with their established
and evolving computational armoury. Progress has
been made in achieving numerical solutions to class-—
ically intractable equations however it is the
purpose of this paper to review two outstanding
problem areas and their interaction which currently
characterise difficulties in computational fluid
mechanics; the representation of the physics of
turbulence and the numerical treatment of advective
transport.

25 THE ORIGIN OF THE PROBLEM

The starting point is the non-linear terms (2nd term)
in the Navier-Stokes equations,
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These represent advective transport and are sometimes
referred to as the convective acceleration or inertia

5B.11

terms. Being non-linear these terms,

2
(e.g. u %% = 3%3— ), have the ability to transfer

energy through the entire range of scales of motion
from kilometres to millimetres. The transfer
mechanism is best seen from the vorticity equation,
easily obtained from the Navier-Stokes equations and
containing a vorticity/strain-rate interaction term
(3rd term) as a direct consequence of the non-linear
terms in the Navier-Stokes equations.
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With reference to the conceptual vortex line model,
(Bradshaw, 1976), the term represents energy transfer
by the stretching and re-orientating of a vortex
filament. Indeed, in three-dimensional motion,
energy cascades to smaller and smaller scales of
motion until it is finally dissipated away to heat
energy against molecular viscous action.

If it were possible to obtain a general closed-form
solution to the Navier-Stokes equations, in principle,
there would be no further problem. This, unfortunately
is not the case and recourse must be made to some
averaged or mean description of the physics
resolvable on a discretised domain.

3. ON AVERAGING EQUATIONS

3.1 Statistical Averaging

The traditional approach to averaging the physics is
the so-called "statistical" approach (Reynolds, 1895)
comprising the decomposition of each instantaneous
dependent variable into a mean and a fluctuating
component, e.g., U = u + u', and time or ensemble
averaging each term of each equation. Essentially
the averaging process filters the explicit behaviour
of certain scales from the motion resulting in a mean
flow field perturbed by additional fluctuating
component terms. For an averaging time which is long,
compared to the time scale of the largest eddies, a
mean flow field is obtained which is completely
devoid of any eddy structure (Rubesin, 1975).



Now in terms of the Navier-Stokes equations it is the
non-linearity of the advective terms which produce
correlations of the component velocity fluctuations
that are not zero after application of the averaging
rules (Hinze, 1959). These terms are identified as
effective stresses (Reynolds stresses) and appear in
the averaged Navier-Stokes equations, the Reynolds
equations, with the role of influencing the mean
motion in a manner consistent with the particular
decomposition’ and averaging.

Following through this line of derivation one- obtains
the Reynolds equations as:
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where qij = =p ui'uj' is the Reynolds stress tensor.

The final step to the usual working equations is to
introduce the Boussinesq eddy viscosity assumption
which links turbulence (Reynolds) stresses and mean
strain-rate in a manner analogous to a viscous fluid
in laminar motion,
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where v is the flow dependent eddy viscosity which
becomes “the coefficient for the whole process of
instantaneous turbulence energy or momentum transfer
now represented as a diffusion mechanism.

On neglecting viscous stresses, v << V.,
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The point to appreciate here is the huge departure
from the physics of emergy transfer between different
scales of motion (the energy cascade) as represented
by non-linear advection in the Navier-Stokes equations
and the mean flow behaviour with only facility for
diffusion of momentum as represented by the Reynolds
equations and Boussinesq eddy viscosity concept.

3.2 Large Eddy Simulation

It is to be noted in passing that considerable

advances have been made over the traditiomal approach
outlined above in the form of direct simulation of

the large eddy structure, see for example Leonard
(1974) or Ferziger (1977). This approach is based

on the sound idea of controlled filtering of the

basic equations such as to sub-grid model only the small
eddy structure up to a predetermined level leaving the
large scales for explicit determination from an
unaveraged description. The method shows enormous
potential but, predictably, computing demands are
heavy and the method is yet to be established as a
practical engineering tool for the computation of
turbulent flows. For the remainder of this discussion
attention will be confined to the statistical approach.

4. NUMERICAL MIXING

Attention has so far been directed to the representation
of physical processes in a computational model of
turbulent flow. Having gone through some severe
simplifying stages, equation (5) evolved as representing
both mean flow advection and non-linear diffusion of
momentum.
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It is appropriate now to focus on the numerical
discretisation of such an equation. Here again it
is the advective (hyperbolic) part of the equation
that is the most troublesome. It is not so much the
non-linearity of the advection term which is the
problem (regardless of the discretisation method
some enforced linearisation is required), but rather
the discrete representation of first derivatives.

To illustrate the problem a first-order discrete
approximation to the one-dimensioned, linearised,
equation representing pure advection is analysed.
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Taking simple first order differences in space and
time yields the discrete equation:
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where C_ = G'EE , the Courant number.
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Expanding in Taylor Series about the central discrete
point (4,n) returns the differential equatiom:
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Comparison with (6) shows how such a first order
difference scheme introduces two additional error

type terms which add spurious physics; numerical
diffusion (second derivative) and numerical

dispersion (third derivative) with their grid
dependent coefficients Yy and Dy respectively.

It is precisely these discretisation error terms which
lead to unsatisfactory numerical results. Diffusion
generally results in an over-damped solution field
whereas dispersion manifests itself in the form of
phase error. Thinking of a solution field in terms

of component modes, dispersion is the spatial spreading
of modes, one with another, due to errors in wave
propagation speeds, and underlies the often encount-
ered oscillatory behaviour of numerical solutions. Of
course the effects are most severe where gradients in
the solution field are steep, i.e. grid resolution
least, however the two effects should be considered
together while recognising them as separate distinct
mechanisms. For a more complete discussion of this
see Tong (1980).

The discussions so far have elucidated the problem
areas stated in the introductory remarks. It is
apparent that in the computation of turbulent flow
one must be looking for a turbulence closure to

set mean flow dependent eddy viscosity (representing
turbulence momentum transfer) throughout a flow field
and to be using computational methods relatively free
of numerical mixing.

5. A COMPUTATIONAL PROCEDURE

One computational procedure developed by the author
on the basis of the forgoing requirements is the use
of the two-equation k-e turbulence model developed

at Imperial College, London and the finite element
method applied to both the mean flow (Reynolds)
equations and the two further field equations, one
for k the turbulence kinetic energy and the other for
€, its dissipation rate.



The k-¢ model was chosen because it is derived
directly from the Navier-Stokes equations with only
three main assumptions further to the Reynolds

decomposition. They being:
(1)  isotropy,
(i1) the Boussinesq assumption (introduced
earlier),

(iii) the Prandt%—Kalmogorav relationship,
k
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Derived on this basis, the k-¢ model is then the
simplest turbulence model not requiring an imposed
length scale (or equivalent) input and thereby it
attains a unique position within the hierarchy of
turbulence models. Details of the model can be found
in the primary reference, Launder and Spalding (1974)
and a full self-contained derivation is given in
Tong (1982)1.

The finite element method was chosen primarily on
its facility for ease of grid refinement in regions
of steep gradients and its ability to handle irregular
geometries, The nature of the finite element as an
integral formulation and hence the so-called natural
boundary condition, (arising from a Greens Theorem
reduction of second derivatives), later became an
important link in the solution algorithm between

the mean flow model and the turbulence model.
Details of the special boundary module developed to
handle flow along a solid boundary can be found in
Tong (1982)2,

It is sufficient here to give the broad outline of the
algorithm in terms of the two-dimensional mean flow
equations (penalty function formulation) and the k

and ¢ equations. The mean flow model feeds a velocity
and strain rate field to the turbulence model and in
turn receives an update on the eddy viscosity field.

Mean Flow Model
a2 L. 2 S:m—,[v;[a—: +&]
SeB-L g - R B Rl
Newton-Raphson non-linear iteration
Turbulence Model
el - B R e Eh B
dlavite Sl o btn 0
where P, = vt{ l%}2+2l%%]2+ +z} }
Picard Substitution non-linear iteratiom

Figure 1 Series Solution Algorithm

6. EXAMPLE COMPUTATIONS FOR RECIRCULATING FLOWS
Finally some results of example calculations are
given. Flows containing zones of recirculation are
chosen for the reasons that they are a class of flow
which exercises to good effect the ideas presented.
They are challenging in that they inevitably arise
in complex geometries where there is associated flow
separation, an inducing main stream flow, turbulence
momentum transfer through a shear layer and region
of reattachment. The application areas to which they
apply are diverse, e.g. environmental flows in a
complex estuary or around a breakwater, flows in
complex geometries as might be found in industrial
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plant or over complex aerodynamic shapes as
encountered in the aircraft industry. Additiomally,
there is beginning to be amassed a large body of
experimental data for test cases (see proceedings,
Stanford Conference, 1980-8l) and hence such flows
are beginning to find popularity as a testing ground
for advanced computational techniques.

The prototype problem can be formulated as follows.

¥

Figure 2 Prototype Recirculating Flow

Consider flow past a barrier and a particle executing
mean streamline circulation. In the event of losing
energy to the boundary friction of the containing
vessel and to smaller scales of motion, the motion

of that particular particle would die out unless there
is a sustaining energy transferred into the recircul-
ating zone from outside the region and necessarily
across mean streamlines. Such is the job of the
turbulence model; to effect turbulence momentum
transfer as a diffusion process which means setting
the eddy viscosity or turbulence diffusion coefficient
to achieve a net effect on the mean flow reasonably
consistent with the non-linear energy cascade
represented in the Navier-Stokes equations. The job
of the numerics is to implement the physics as
intended by the derived differential equation set
without the introduction of any significant numerical
mixing.

6.1 Flow Past a Breakwater

The example of depth averaged flow past a breakwater
is used to illustrate numerical dispersion and the
consequence of execessive diffusion giving an over-
damped solution.
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In Fig.3a the effect of numerical dispersion, thought
of as the spatial spreading of component modes, is
evident in the oscillatory nature of the velocity
vector pattern upstream of the breakwater tip. This
is the effect of 3rd and higher order odd derivative
error terms which become significant through the
gradients associated with the step change in the
longitudinal velocity component which is seen to exist
in moving from the near wall to the free-stream side
of the breakwater tip.

In Fig.3b the effect is seen of arbitrarily increasing
the diffusion coefficient as a blanket value by an
order of magnitude. Admittedly the approach field is
more realistic but attention is drawn to the heavily
damped eddying zone as indicated by a hugh decrease in
reattachment length.

The example highlights the above-mentioned minimum
aims of turbulence modelling, accurate numerics and a
turbulence model to represent the physics of turbulence
momentum transfer as it varies over the flow field.

6.2 The Backward Facing Step

Flow past a backward facing step or sudden expansion
has come to be a classical example of recirculating
flow. Results, using the algorithm of Fig.l, are
given here in terms of mean flow profiles, turbulence
kinetic energy and Reynolds stress at approximately
mid-recirculation zone downstream of the step face,
at x/h = 3, where h is the height of the step.

The results are compared with the pulsed-wire
experimental results of Baker (1977) and are seen to
be in encouraging agreement. Details of the simulation
have been reported in Tong (1982)2:3 and the computing
requirement to reach convergence on a finite element
mesh of 96 quadratic quadrilateral elements (427 nodes)
was approximately 6 minutes CPU time on the CDC 7600
of the Manchester Computing Centre.
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7. CONCLUDING REMARKS

Major difficulties in accurately modelling high
Reynolds number, incompressible flows have been pre-
sented.. These fall broadly onto the areas of first
deriving an appropriate mathematical description of
the physics and then finding a discrete (numerical)
solution of that representative physics without undue
{ntroduction of spurious numerical effects.

Progress has been made towards the computational flume
or wind tunnel in that turbulence quantities, compar-
able in credibility with experimental data, can be
computed for complex flows. The basic nature of the
problem, which this paper has sought to address, is so
demanding that ome must conclude that the strategy of
formulation, numerical solution and verification
against results from an on-going experimental prog-
ramme will prevail for some time. Factors such as
compressibility and buoyancy add further complication.

On the formulation side, the large eddy direct
simulation approach of Stanford University must be
geen as one of great potential given the projected
role of hardware development while the demands on
gsimulation of the profound differences between two-
and three-dimensional inertial characteristics is
suggested as an outstanding area for investigation
(Tong, 19823),
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