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SUMMARY

When a collapsing cavitation bubble is sufficiently close to a boundary, a high speed liquid jet is
observed to thread the bubble in the latter stages of collapse.
to simulate the time-dependent shape of the cavitation bubble and to accurately predict the jet speed.

A high order boundary integral method is developed
The paper

discusses the development of the technique, compares predictions against the well-known Rayleigh bubble solution in

an infinite fluid and models the growth and collapse of a cavitation bubble near a rigid boundary.

Qur calculations

indicate that the growth phase has an important bearing on the form of the cavitation bubble during the collapse
phase yielding substantially different results for the speed and location of the jet than previously well-documented

results.
1 INTRODUCTION

It is well-known that a cavitation bubble collapses
asymmetrically when near a rigid boundary yielding a
high speed liquid jet that is directed towards the
boundary (Benjamin and Ellis 1966, Plesset and Chapman
1971, Gibson and Blake 1980). If the bubble is
sufficiently close to the boundary, the high speed jet
may cause mechanical damage ('pitting') of the surface.
Experimental observation (Benjamin and Ellis 1966,
Gibson 1968, Gibson and Blake 1980) and theoretical
calculation (Plesset and Chapman 1971, Prosperetti 1982)
support this view.

However, theoretical developments so far have only
considered the collapse of an initially spherical bubble,
a state which is probably not realised in practice. It
is our contention that the growth phase must also be
important, especially if close to a boundary. Thus, in
this paper, we consider both the growth and collapse
phase of a cavitation bubble, initiating the growth of

a cavitation bubble from a small sphere with the fluid
being given a known finite kinetic emergy. A high order
boundary integral method is developed to allow us to
obtain an accurate simulation of the time dependent
bubble shape and, during collapse, the speed of the
liquid jet.

In the next section we summarise the relevant aspects of
the high order boundary integral technique which are
developed more extensively in Tzib, Doherty and Blake
(1983) and Taib (1984). 1In later sections we illustrate
the power of the technique by comparing our results
against the well-known Rayleigh bubble solution. Results
of our calculations for the growth and collapse of a
cavitation bubble near a rigid boundary are compared
against some previous experimental results (Gibson and
Blake 1980) and theoretical predictions (Plesset and
Chapman 1971, Prosperetti 1982).

2 BOUNDARY INTEGRAL METHOD

2.1 Boundary Integral Formulation

For any sufficiently smooth function ¢ which satisfies
Laplace's equation within a domain [, having piecewise

smooth surface S, Green's Integral Formula may be
expressed as (Jaswon and Symm, 1977)
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Experimental observation appears to substantiate our theory.
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potential at any interior point can Be computed using
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2.2 Geometric Modelling

As part of the numerical development it is necessary to
parameterise the surface 8. For axisymmetric problems,
as we have here, all quantities are independent of
circumferential location and thus we need only specify
a half-contour which maybe rotated through 27 to form
the surface. We approximate the surface § by N
strips, say S; (j = 1,...,N). In the case of a
cavitation bubble, a typical strip is the surface of a
frustrum of a cone. This development of the model
allows us to perform one analytical integration in
advance of the numerical solution.

2.3 Integrals to be Evaluated Analytically

Let p and q € S with coordinate (rO,D,zo) and

(r,B,z) respectively, we have
1 1
e . (4)
Ip=d| [(r+r0)2+(z-—zo)2—~4rrocos2 %]%
By using (4), we obtain
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and with K(k)
the first kind.

being the complete elliptic integral of
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This is the integral over one strip defined by r = r(£),
z = 2(E) for £ in the interval [0,1] where £ is a
parameter convenient for defining the surface shape.

One can obtain

o e
5 on | |p=q| o 2 2 %
b [(r(£)+r0) +(Z(£)'ZO) ]

dz E(k) 2 dz
xﬂ:s(rﬂ- )_dﬁ(z z )_ dE :[]_ k 4 2 13 r K(k)}

where E(k) is the complete elliptic integral of one
second kind, approximations for which available in
(Hastings, 1955),

(7N

K(k)
E(k)

o

P(x) = Q(x)in(x) (8)
R(x) = S(x)2n(x)

where x = l-kz, P, Q, R and S are polynomials.
2.4 Constant Elements

The potential and its normal derivatives are assumed
constant on each segment and the boundary integral
equation is written at the mid point of each segment.
Equation (3) for a given point i, becomes

3 1 1
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Equation (9) may now be expressed as
i 3
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By defining Hjj = ﬁij + Zﬂéij we can write equation
(10) as

= | 3 .
jZlHijcpj = jglcij 3 (#) 1= L2, (11)
or in the matrix form, simply

H$ = GQ (12)
2.5 Linear Elements
The surface is replaced by N segments of a cone such

that the nodes are now at the intersection of these
segments. For < £ <1 we let

M((E)=1-¢8
M, (E) = &

and consider the surface approximation defined by
2
r(E) = izl Mi(g)l‘i

2 (13)
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Equation (3) can now be written as

N+1 N+1
ci¢i'£[¢5a;[ lq ]dsszf%%ipiqlds
3=1 ’sy IP4=d;] 3=1’s S LN
1

(14)

which leads to a matrix equation of the form defined in
(12).

2.6 Quadratic Elements

More accurate approximations can be obtained by using
quadratic elements. In this case ¢, and the
5urface are approximated by quadratic fafctions, For
£ g <1, we let
M (5) = (E-1)(2&-1)
M, (E) = 4E(1-8) (16)
M, () = E(2E-1)

and consider the surface approximation to be defined by

3
r@® = ] M©®r
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3
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where 1y = r(pi), zy = z(py) (1 = 1,2,3) and where
py and p3 are at the end points and pp at EEF mid
point of the segment. We approximate ¢ and

3
9= 121 M, (E)9,

(18)
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P 8y
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where ¢, = 6(p,) —ani= = (o)) 1=1,2,3.

Equation (3) for a given point i becomes

2N+1 2N+1
o T ot T i
y=1 Sj Py jl i=1 Sj |Pi Qj| (19)
i=1,2,3,..,2N+1

again leading to a matrix equation of the form given in
(12).

2.7 Numerical Evaluation of Integrals

The integrals can be evaluated using Gauss quadrature
formulae, except when the interval over which we are
integrating contains the point under consideration. In
this case the logarithmic singularity in K(k) and
E(k) must be accommodated. A special case exists when
this point lies on the axis. The detailed calculations
required in this section are far too extensive to be
included in this paper but may be found in either Taib,
Doherty and Blake (1983) or Taib (1984).

We now apply the techniques outlined in this section to
the Rayleigh bubble problem and to the growth and
collapse of a cavitation bubble near a rigid boundary.
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3 RAYLEIGH BUBBLE SOLUTION

To test the performance of the method, we used quadratic
elements to simulate the collapse of a single spherical
bubble in an infinite fluid, the well-known Rayleigh
problem. The calculation started to develop instability
for a bubble radius 1.2520 x 1073 at time t = 0.9167
which is in reasonable agreement with the exact
theoretical collapse time of to = 0.91479. Greater
accuracy could be obtained if additional elements or
more accurate time stepping procedures were used.

o RIGID BOUNDARY

The growth and collapse phases of a cavitation bubble
near a rigid boundary are modelled using linear elements.
We will assume the fluid is incompressible, inviscid

and that surface tension and gravitational effects are
negligible (Plesset and Chapman 1971, Blake and Gibson
1981). With these assumptions we may present the
velocity as the gradient of a potential which satisfies

Laplace's equation. That is
w=v, Vp=0 (20)
where u is the cartesian velocity vector and ¢ is
the potential. The conditionsat infinity are
u+0 and p > p, (21)

where p is the pressure and p_ is the constant
pressure at infinity. On the bubble surface we have

u_ = u,

B =8 P =P (22)
where u. 1is the velocity of a particle on the surface
and p. is the saturated vapour pressure in the bubble
which is assumed constant. The Bernoulli condition gives

“ 5 = pitia 2
P, = B, — Pigy =¥ plnl (23)

where p 1is the density of the fluid.
For the rigid boundary, there is no flow across it, thus,

3 _ -
T 0 at z 0. (24)

Initially, the growth starts from a small spherical
bubble of radius Ry with the potential given by
(Blake and Gibson 1981)

3
s 3
2 P Pc Rm
Y= Ry E[T] ’R_O] “i (23)

where Ry is the maximum bubble radius which is
determined by p, and pg-

In our computation, we introduce an image bubble so that
the condition (24) will be automatically satisfied so

it is no longer necessary to discretise the rigid
boundary.

The strategy of solution is straightforward. Since,
initially we know the position of the bubble surface
and the value of ¢ on the surface, we can now solve
one of the discretised versions of the integral equation
to give us the value of 3¢/on on the bubble surface.
With knowledge of ¢, we can calculate the tangential
derivative 98¢/3s. Knowing 9¢/0n we can proceed to
calculate the particle velocities, u and u; where
ug and Uz are the particle velocities in the R and
Z direction respectively. TImmediately, we can use a
simple Euler scneme to calculate the next position of

the particle, a time At later,
2z, (tHAE) = z,(t) + u, (E)At + 0(At?) (26)
i 3 Zj
. (t+At) = £, (t) +u, (£)At + 0(At?) . (27)
J J Rj

The potential ¢ can be updated as follows,

PP
o T 1 5] 2
¢j(t+At) = ¢j(t) + [: s ¥ 5 E_lﬂt + 0(At") (28)

where j =1,2,...,M, M is the number of nodes. The
time increment At is carefully chosen so that the
potential ¢ can only change by at most a specified
fixed amount A¢ (Gibson and Blake, 1982).

In our computations, linear dimensions are made
dimensionless with respect to Ry. Thus the axial
co-ordinate z, the radial co-ordinate r and the
initial distance between the bubble centroid and the
rigid boundary h, now become (Blake and Gibson, 1981)

Z = z/Ry,

By using the characteristic collapse velocity
[(pm-pc)/p] , we can scale the time unit to get a

R=1x/R;, Y=h/R,. (29)

_dimensionless time T as follows,

(30)

1
pm,-pc]“ﬁ
)

= * * =
T=t/t%, ¢t Rm[

5 RESULT AND DISCUSSION

The growth and collapse of bubbles near a rigid boundary
was simulated for a number of cases and we include two
illustrative examples here. In case l, the parameter

Y is 1.0 and in case 2, ¥ 1is l.5. Calculations were
stopped when the jet touched the opposite side of the
bubble. The bubble shape for selected dimensionless
time T for each case are shown in figure 1. Table 1
lists the dimensionless time T for each shape

Figure la | Figure 1b
Shape Time T Time T

A 0.001553 0.001553
B 1.018353 1.016221
C 1.947809 1.880133
D 2.026057 2.000004
E 2.056111 2.028881
F 2.097495 2.050086
G 2.125974 2.068861
H 2.148931 2.087584
I 2.167770 2.098546

Table 1 Table of dimensionless time T for each

shape illustrated in figure I.

For the case Y = 1.0, Plesset and Chapman (1971)
simulate the collapse of an initially spherical cavity.
They obtained bubble shapes which are more elongated
than those we obtained here indicating the importance
of also considering the growth phase as well. We have
separately considered the case Y = 0.96 where we
obtain very good agreement with the experimental results
reported in Gibson and Blake (1980), hence confirming
our views.

For ¥ = 1.5, the bubble shapes we obtained are in
general agreement with those obtained by Plesset and
Chapman (1971) and those obtained by Guerri, Lucca and
Prosperetti (1981). However in our model the collapse
occurred much nearer to the rigid boundary again
indicating the importance of the growth phase in
determining the characteristic of the collapsing
cavitation bubble.

In summary, we conclude that the boundary integral
method is a powerful technique for modelling unsteady
problems in fluid mechanics involving moving boundaries,
as has been illustrated in this paper concerning the
growth and collapse of cavitation bubbles.
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Figure 1 Bubble shapes for
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